Directsound или wasapi что лучше?

Hi-Fi и High-End техника или энциклопедия звука и видео

ЗВУКОМАНИЯ

Hi-Fi и High-End техника или энциклопедия звука и видео

WASAPI

WASAPI

WASAPI — это драйвер с низкой задержкой, когда он используется в монопольном режиме и напрямую взаимодействует с драйвером аудиоустройства. Это собственный ASIO от Microsoft.

WASAPI

ASIO является проприетарным протоколом. Вы можете использовать только то, что поддерживает ваше аудиоустройство.

WASAPI является неотъемлемой частью Windows (Vista, ХР, 7, 10 и выше).

В принципе это работает со всеми аудио устройствами.

На практике не все комбинации аудиоприложений и драйверов аудиоустройств будут работать правильно с использованием этого интерфейса.

АСИО

В эксклюзивном режиме никакое другое приложение не может использовать ЦАП или звуковую карту.

Нет больше системных звуков и даже на полную громкость в стерео!

скачать WASAPI + музыка во флак можно ЗДЕСЬ

Поскольку WASAPI в эксклюзивном режиме напрямую обращается к драйверу аудиоустройства, поток, отправляемый на это устройство (внешний ЦАП), должен соответствовать возможностям этого устройства с точки зрения глубины в битах, частоты дискретизации, количества каналов и формата аудио (в большинстве случаев PCM) в противном случае это будет тишина.

  • Приложение, использующее WASAPI, может сделать это, настроив аудиоустройство в соответствии с источником.
  • В этом случае у нас почти идеальное воспроизведение.
  • Это позволяет автоматически переключать частоту дискретизации.
  • Автоматическое переключение частоты дискретизации и аппаратное обеспечение

Ustars_ЦАП + усилитель в классе А

В случае USB-ЦАП (с использованием драйверов основного режима) вы получаете автоматическое переключение частоты дискретизации с использованием эксклюзивного WASAPI.

  • Большую часть времени встроенный звук позволяет автоматически переключать частоту дискретизации.
  • Многие дискретные звуковые карты не допускают автоматического переключения с использованием WASAPI.
  • Если дискретная звуковая карта поставляется с ASIO, лучше использовать этот драйвер, если вы хотите автоматическое переключение частоты дискретизации.
  • Разработчик также может выбрать источник информации о возможностях аудиоустройства.
  • Если источник монофонический, а аудиоустройство 2-канальное, пользователь может решить отправить один и тот же сигнал на оба канала.

Если частота дискретизации источника не поддерживается аппаратными средствами, например, источником 192 кГц с аудиоустройством 96 кГц, программа, использующая WASAPI, должна выполнить SRC (преобразование частоты дискретизации).

Это можно сделать, вызвав SRC, предоставленный Windows, или тот, который предоставлен приложением.

Аудио архитектура Windows начиная с Виста и далее

В Windows есть совершенно новый механизм микширования звука , поэтому WASAPI дает вам возможность подключиться непосредственно к нему, а не проходить через уровень абстракции.

Плюсы аудио движка:

Переход к 32-битной с плавающей запятой, а не к 16-битной, что значительно улучшает качество звука при работе с несколькими аудиопотоками или эффектами.

Переход от режима ядра к режиму пользователя с целью повышения стабильности системы (плохие драйверы не могут отключить систему).

Концепция конечных точек, а не аудиоустройств — для пользователей Windows проще отправлять звуки в «наушники» или записывать звук с «микрофона», а не требовать от них технической информации о звуковой карте, установленной в их системе.

Группировка аудио потоков

В Vista, ХР и выше вы можете сгруппировать все аудиопотоки из одного приложения и отдельно контролировать их громкость. Другими словами, регулятор громкости для каждого приложения. Это немного сложнее, чем может показаться на первый взгляд, потому что некоторые приложения, такие как IE, содержат все виды процессов и плагинов, которые все воспроизводят звук по-своему.

  • По умолчанию все звуки отправляются в микшер.
  • Микшер преобразует звук в 32-битное число с плавающей запятой и выполняет микширование.
  • Результат прерывается и преобразуются обратно в формат, который принимает аудиодрайвер (в большинстве случаев это 16 или 24 бит).

WASAPI

Приложения, плееры отправляющие звук на микшер, должны следить за тем, чтобы частота дискретизации соответствовала частоте микшера по умолчанию. Это значение по умолчанию установлено на вкладке «Дополнительно» в звуковой панели.

Даже если источник соответствует частоте дискретизации по умолчанию, применяется сглаживание.

Если вы не применяете какие-либо эффекты для каждого потока или глобальные эффекты и

слушаете только одно приложение, выводящее звук, и частота дискретизации и битовая глубина, установленные для Ц, соответствуют частоте дискретизации материала, то теоретически не должно быть никакой разницы с оригиналом, потому что преобразование даже из 24-разрядного целого числа в 32-разрядное число с плавающей запятой без потерь.

foobar2000 Wasapi

Эксклюзивный режим ВАСАПИ

  • WASAPI в эксклюзивном режиме обходит аудио движок (микшер).
  • Преобразование в 32 применяемое микшером, исключаются.
  • Он также блокирует аудиодрайвер; никакое другое приложение не может использовать аудиоустройство.
  • Общий режим
  • Это эквивалентно DS (Direct Sound).
  • Весь звук отправляется на микшер.
  • Приложение должно вызывать преобразование частоты дискретизации, если частота дискретизации отличается от значения, установленного на аудио-панели win.

Ustars ЦАПы + 11.28 ЦАПРЕ

Как правило, приложение отвечает за предоставление аудиобуферов Audio Engine в формате, который поддерживается аудио-движком. Форматы аудиосэмпла состоят из частоты дискретизации, битовой глубины и количества каналов. Собственная битовая глубина сэмплов, которую Audio Engine использует для внутреннего использования, составляет 32-битное число с плавающей запятой. Однако Audio Engine принимает большинство целочисленных форматов, которые до 32-бит. Кроме того, Audio Engine конвертирует большинство форматов в представление с плавающей запятой внутри.

Панель управления звуком задает требуемую частоту дискретизации в качестве «Формат по умолчанию». Формат по умолчанию определяет формат, который используется для предоставления контента аудиоустройством. Количество каналов, которые поддерживает Audio Engine, обычно является количеством АС для аудиоустройства.

Изменение частоты дискретизации и глубины в битах данных называется преобразованием частоты дискретизации. Приложение может решить написать свой собственный преобразователь частоты дискретизации. В качестве альтернативы, приложение может решить использовать API-интерфейсы, такие как PlaySound, WAVE, цифровой интерфейс музыкальных инструментов (MIDI) или микшер. В этих API преобразование происходит автоматически. Когда это необходимо, проигрыватель Windows Media выполняет преобразование частоты дискретизации в своем внутреннем конвейере Media Foundation.

Однако, если проигрыватель воспроизводит аудио, которое Audio Engine может обрабатывать изначально, проигрыватель перестраивает свой собственный конвейер без преобразователя частоты дискретизации. Такое поведение происходит, чтобы уменьшить промежуточные аудио преобразования и улучшить производительность.

Релейный предусилитель обзор

WASAPI можно использовать в режиме push и в режиме pull (стиль события).

  • У пары асинхронных ЦАП USB были всевозможные проблемы с использованием режима push из-за проблем с буфером в WASAPI.
  • Это было решено с помощью стиля WASAPI — Event.
  • Звуковое устройство извлекает данные из системы.
  • Большую часть времени вы не можете выбрать режим. Это просто зависит от того, как программист реализовал WASAPI в плеере.
  • Разница между выполнением push и выполнением события заключается только в том, что отвечает за то, когда хост должен отправлять звук на оборудование.

На основе событий:

  • Хост сообщает API, что он хочет получить информацию, когда наступает подходящий момент для отправки аудио,
  • Хост может подготовить некоторое аудио в отдельном потоке, чтобы он был готов, когда API его запрашивает ,
  • API запрашивает у хоста больше звука,
  • Хост отправляет подготовленный буфер, если он был готов, или затем готовит буфер и отправляет его.

На основе push:

  • Хост сообщает API, что он cообщит, когда наступит подходящий момент для отправки аудио.
  • Хозяева готовят аудио, чтобы он был готов, когда API готов.
  • Хосты спрашивают API, готов ли он.
  • Если он не готов, ждет некоторое время и снова спрашивает
  • Когда API отвечает, что он готов, хост отправляет подготовленный буфер. Он также может подготовить буфер в это время и отправить его.

WASAPI — Стиль события

Режим вывода позволяет звуковому устройству извлекать данные из плеера. Этот метод поддерживается не всеми аппаратными средствами, но рекомендуется при его поддержке.

WASAPI — Event Style имеет несколько преимуществ:

  • Это позволяет аудиоподсистеме извлекать данные (когда установлены события) вместо передачи данных в систему. Это позволяет уменьшить размер буфера задержки и удалить ненадежный слой Microsoft.
  • Он создает, использует и уничтожает все интерфейсы WASAPI из одного потока.
  • Аппаратное обеспечение (или интерфейс WASAPI) никогда не видит паузы или сброса вызовов. Вместо этого, в режиме паузы или сброса тишина подается в тянущую петлю. Это устраняет необходимость в хакерских атаках для карт, окружающих свои буферы при паузе, сбросе и т. д. (ATI HDMI и т. д.).
  • Это позволяет получить более прямой путь передачи данных к драйверу / оборудованию.
  • Основной «цикл извлечения» использует круговой буфер без блокировки (система, которую Дж. Ривер построил для ASIO), так что полное выполнение запроса извлечения выполняется максимально быстро.

Для использования WASAPI требуется плеер, поддерживающий этот драйвер в эксклюзивном режиме.

Я думаю, что эксклюзив WASAPI немного более прозрачен по звуку, чем DS (Direct Sound), аудио-движок Win по умолчанию.

Однако, поскольку все, что отправляется на конечную точку аудио, должно точно соответствовать возможностям этого устройства, WASAPI также более проблематичен. Малейшее несоответствие по количеству каналов, битовой глубине или частоте дискретизации, и вы слышите тишину.

Советы по АСИО и ВАСАПИ

  1. Настройте медиаплеер для WASAPI и DS и выполните тест прослушивания.
  2. Если вы не слышите разницу, придерживайтесь DS.
  3. Если вы слышите разницу, используйте тот, который вы предпочитаете.
  4. WASAPI вообще не работает с дискретными звуковыми картами.
  5. В случае с USB ЦАП это лучший путь качеств.звука.

ЦАП 11.38 + ТДС 5

ИТОГИ. WASAPI — это интерфейс с низкой задержкой для драйвера аудиоустройства.

Обход микшера — это все, что он делает. Разработчик или пользователь приложения, использующие WASAPI, должен убедиться, что свойства аудиофайла + плеера и возможности аудиоустройства (внешний ЦАП) совпадают.

Читайте также  Какие накидки на кожаные сиденья лучше?

Цифровой аудиотракт: апсемплинг и апскейлинг, WASAPI, ASIO и внешний мастер клок для USB-аудио

Пара слов о составе, работе и оптимизации цифрового аудиотракта с использованием компьютера и USB. В принципе, тема скучная и букв получилось много, так что если осилить сложно — сразу переходите к выводам.

Basic

Звуковой сигнал, в общем случае, кодируется последовательностью значений амплитуды сигнала, измеренных через равные промежутки времени. Единичное значение амплитуды называют сэмплом, а время между двумя соседними измерениями — частотой дискретизации или частотой квантования. В подавляющем большинстве случаев сэмпл при передаче на аудиоустройство описывают знаковым целым числом — разрядности 16, 24 или 32 бита. Разрядность в 32 бита может быть использована для выравнивания буфера устройства по границе двойного слова, тогда семпл кодируется только первыми 24 битами, или же для полноразрядного кодирования. Первый вариант доступен в ASIO и WASAPI, второй только в WASAPI.

Максимально достижимое соотношение сигнал/шум определяется разрядностью сэмпла и вычисляется как 20log(2^q) где q — разрядность сэмпла.

16 бит — диапазон сэмпла [−32768, 32767], SNR 96.33 дБ
24 бит — диапазон сэмпла [−8388608, 8388607], SNR 144.49 дБ
32 бит — диапазон сэмпла [−2147483648, 2147483647] , SNR 192.66 дБ

Частоты дискретизации (количество сэмплов в секунду для одного канала) из-за взаимной кратности стоит выписать в два набора: <44100, 88200, 192000>и <48000, 96000>. Два набора частот приводят к тому, что аудиоустройству нужно два осциллятора для качественной синхронизации. Конечно, можно использовать и один с кратной частотой, например, как 88200, так и 96000 Гц, но это существенно повышает сложность исполнения точного тактового контура.

Вывод: качественное аудиоустройство должно иметь два осциллятора, один для работы с частотами <44100, 88200>, второй для <48000, 96000, 192000>.

При обработке цифрового сигнала (DSP — digital sound processing) сэмпл масштабируется как минимум к 64-битному числу с плавающей точкой (double64) в диапазоне от –1 до 1. Наиболее часто применяются преобразования upsampling/downsampling и upscale/downscale. Второе заключается в изменении разрядности сэмпла и в подавляющем большинстве реализаций сводится к простому масштабированию 64-битного double к желаемой битовой разрядности. Данное преобразование помимо масштабирования полезного сигнала делает точно такое же масштабирование и шума, поэтому upscale не меняет соотношение сигнал/шум исходного сигнала, а downscale дополнительно увеличивает долю шума за счет деградации разрядности полезного сигнала.

Upsampling/downsampling очень часто выполняется через решения полинома n-го порядка (как правило, кубического). Берется последовательность из K-сэмплов, и из них рассчитываются коэффициенты интерполирующего полинома, затем полученный полином решается для новых точек семплирования. В идеальном случае, согласно теореме Найквиста-Котельникова, upsampling может только сохранить разрешение исходного сигнала на новой частоте семплирования. В неидеальном случае возможно появления шума на высших гармониках. Интересно, что downsampling после upsampling вернет исходное значение сигнала, даже если после upsampling в нем появились искажения и шум.

В студиях используют алгоритмы, объединяющие upsampling и upscale в единый процесс для увеличения разрешения сигнала и его динамического диапазона. Эти алгоритмы достаточно «тяжелы» и не могут быть использованы при воспроизведении в реальном времени.

Еще один случай обработки DSP — это convolution (свертка), применимая для адаптации сигнала под акустические свойства комнаты. Здесь исходный сигнал разлагается на гармоники в ряд Фурье до n-го порядка. К сожалению, все быстрые алгоритмы как правило работают с амплитудой сигнала определенной частоты без учета фазы (которую еще очень непросто правильно измерить). Более того, быстрые алгоритмы не решают интеграл, а берут среднее значение в диапазоне. В результате вся коррекция сводится к параметрическому эквалайзеру. Простые полосные фильтры вносят фазовые искажения на частотах разделения, из-за этого параметры convolution нужно еще раз и еще раз подстраивать.

MQA на высоких гармониках, на мой взгляд, инкрементально кодирует первую производную (наклон) функции амплитуды сигнала. Зная частоту гармоник кодировки, простым разложением в ряд Фурье очень просто вытащить и восстановить поведение производной. А имея производную, можно уже делать upsampling не полиномами, а сплайнами со сглаживанием. Вот тогда, уже в реальном времени, можно делать upsampling и upscale с увеличением разрешения и динамического диапазона сигнала. Конечно, это не будет оригинальный Hi-Res, но уже кое-что.

Выводы: Upscale не улучшает соотношение сигнал/шум. Upsampling не улучшает разрешения сигнала. Upsampling имеет смысл для перехода от линейки 44100 к 48000, если осциллятор Вашего устройства лучше для 48000. Использование room correction требует итеративной настройки и, во многом, непредсказуемо.

Software player

Я ограничусь рассмотрением Windows-архитектуры, как наиболее доступной и наиболее оптимальной для создания цифрового транспорта. Windows предоставляет три варианта доступа к аудиоустройству: Kernel Streaming, Direct Sound, WASAPI. Плюс подавляющее большинство аудиоустройств поставляются с ASIO-драйвером. Из перечисленных способов только Direct Sound и ASIO являются полноценными аудиоинтерфейсами с возможностями DSP: upsampling/downsampling, upscale/downscale, управлением громкостью и микшированием. Кроме того, ASIO имеет возможность расширения аудиотракта за счет плагинов.

Kernel Streaming и WASAPI являются протоколами низкого уровня для управлений различными устройствами, в том числе и аудио. При этом тяжесть любой DSP-обработки сигнала ложится на программный плеер, использующий эти протоколы. Современные высококачественные программные плееры используют в работе WASAPI и/или ASIO, поскольку оба они предоставляют возможность асинхронной передачи аудиоданных из памяти компьютера в память аудиоустройства.

На всякий случай замечу, что память компьютера и память аудиоустройства — физически разные микросхемы. Программный плеер при работе имеет доступ только к памяти компьютера, где и формирует аудиоданные. Перезапись сформированных данных из одной памяти в другую осуществляется драйвером аудиоустройства.

WASAPI и ASIO имеют практически идентичный принцип работы: плеер подготавливает данные в буфере обмена и указывает протоколу адрес этого буфера, затем он подготавливает следующий буфер и ждет пока протокол не закончит обработку первого. Поскольку процесс подготовки данных и их воспроизведение идут параллельно, то протоколы называют асинхронными. WASAPI в отличие от ASIO имеет два режима работы.

Первый режим — «совместное использование» устройства, когда несколько процессов одновременно могут передавать данные устройству. Второй режим — «эксклюзивный», когда устройство блокируется для монопольного использования только одной программой (одним клиентом). ASIO работает исключительно в эксклюзивном режиме. С точки зрения воспроизведения разницы между WASAPI и ASIO не существует, кроме разве что возможности передачи по WASAPI полноразрядного 32-битного семпла (ASIO если и будет поддерживать такой режим, то все равно будет использовать только первые 24 бита из 32).

Как было отмечено выше, upscale не улучшает соотношение сигнал/шум и, поскольку полноразрядного 32 исходного файла я ни разу не встречал, то и здесь нет никакой разницы между WASAPI и ASIO. Тем не менее, я как программист и как слушатель предпочитаю WASAPI, естественно, в эксклюзивном режиме. Но это дело исключительно вкуса и личных симпатий.

Вывод: если Вы (как и я) воспроизводите аудиосигнал без DSP-обработки, то Вы можете использовать любой (*) программный плеер, поддерживающий WASAPI Exclusive и/или ASIO.

(*) смотри внимательно следующий раздел.

USB Audio

Начну с хорошей новости для Windows: начиная с релиза 1703 включен нативный драйвер USB Audio 2.0.

USB-аудио может работать в трех режимах: асинхронном, синхронном и адаптивным. При асинхронном режиме источник устанавливает значение клока и передает это значение вместе с буфером данных на аудиоустройство. Оно должно синхронизироваться по полученному клоку, обработать буфер, используя свой клок, и послать подтверждение источнику.

При синхронном режиме источник и аудиоустройство периодически синхронизируют свои клоки, а данные уже передаются без тайминга. При адаптивном режиме значения клока указывает аудиоустройство, а источник должен синхронизировать передачу данных.

Как видно, синхронный режим — самый требовательный, поскольку требует качественного клока как на источнике, так и на аудиоустройстве. Как правило, система работает в асинхронном режиме, а значит использует клок компьютера, качество которого не отвечает требованиям Hi-Fi и порождает огромный джиттер. Собственно говоря, это проблема породила кучу эзотерических плееров, которые перепрограммируют системный таймер, меряют скорость процессора, захватывают наибольший приоритет или вообще кладут компьютер в гибернативный режим.

Проблему это целиком не решает, но джитер снижается. Более приемлемый способ решения — это использование промежуточного буфера с реклоком. Это устройство не воспроизводит полученный буфер данных, а передает его дальше по цепочке, но уже с собственным временным кодом, полученным от собственного прецизионного осциллятора. Качество звука при этом существенно улучшается. На мой взгляд, из доступных буферов наиболее хорош Amanero, но можно использовать и XMOS с хорошим осциллятором.

Другое решение — это использование специализированного цифрового транспорта. В таком транспорте установлен качественный независимый выделенный осциллятор (как правило, два) для работы с частотами <44100, 88200, 192000>и для <48000, 96000>. Во всем остальном, это устройство намного примитивнее чем обычный компьютер. Как правило, при наличии опыта, очень качественный цифровой транспорт можно собрать самому на основе одноплатовых миникомпьютеров и софта Open Source. Поэтому цены на различные фирменные реализации цифрового транспорта меня реально шокируют.

Кардинальное и самое правильное решение для устранения джиттера и получения действительно правильного звука — это использование внешнего мастер клока. При этом и железо плеера, и ЦАП должны быть подключены к нему в слэйв-режиме. Именно такой подход используется в студиях звукозаписи.

Вывод: качество звука лучше улучшать не эзотерическим софтом, а железным цифровым буфером с реклоком. Самое правильное решение — это использование внешнего мастер клока

Как правильно слушать музыку на компьютере – настраиваем Foobar2000

Для компьютера существует множество плееров, но истинно «аудиофильских» можно пересчитать по пальцам. У слушателей разные приоритеты, одним нужен исходный звук без какой-либо обработки, другим приукрашенный звук. В материале пойдет речь о первой категории плееров на примере foobar2000 под Windows 7 (настройки для Windows 10 аналогичны).

Путь звука от файла до ЦАП

Каким требованиям должен удовлетворять плеер? Прежде всего должна быть поддержка вывода звука как минимум через один интерфейс: WASAPI (Exclusive) или ASIO. Остальные требования — это возможность отключения внутренних обработок звука.

Для Windows это:

  • Foobar2000
  • AIMP
  • Album Player

Рассмотрим путь звука от файла до ЦАП звукового интерфейса (звуковой карты или внешнего ЦАП).

Схема максимально упрощена

WASAPI

Плеер отвечает за декодирование файла и передачу в систему через один из интерфейсов, MME или ASIO. MME – это звуковая подсистема Windows, которая используется по умолчанию во всех плеерах и программах (аудио плеерах, видео плеерах, браузерах, Skype, играх и прочих программах). В MME интерфейсе есть отдельный режим WASAPI Exclusive, который позволяет обойти ресемплер и микшер Windows.

Просмотр видео с выводом звука через WASAPI возможен в плеере Light Alloy

При воспроизведении из под WASAPI звук на выходе возможен только от одного проигрывателя (программы), все остальные звуковые потоки будут в режиме «mute». Некоторые программы могут выдать ошибку, что «звуковое устройство недоступно». В профессиональных картах возможно одновременное воспроизведение звукового потока из WASAPI и ASIO, т.к. звуковые потоки обходят микшер Windows, но после попадают в драйвер звукового устройства и далее смешиваются микшером звуковой карты. Там, где ASIO сделано через WASAPI, могту быть различные проблемы со стабильностью работы.

Для того, что бы на выходе получить звук одновременно от нескольких программ, его надо привести в единую сетку разрядности и частоты дискретизации, а потом все потоки просуммировать. В прошлом поколении ОС XP для MME существовал автомат опорной частоты и при воспроизведении звука лишь из одной программы отключался ресемплинг, системный микшер не вносил никаких существенных изменений в звуковой поток. В Windows 7 все работает принудительно, независимо от количества программ, воспроизводящих звук. Автомат опорной частоты возможен только для WASAPI и ASIO при соответствующей поддержке драйвера звукового устройства.

ASIO – это профессиональная звуковая подсистема для программ с обработкой звука от Steinberg. Основным преимуществом ASIO является возможность получить ультранизкие задержки звукового сигнала, которые позволяют обрабатывать звук в режиме реального времени при игре вживую на midi инструментах.

Через ASIO звуковой поток направляется в обход микшера Windows.

ASIO поддерживают не все звуковые карты, в то время как WASAPI все.

По этой причине не стоит гнаться за ASIO поддержкой, как за «манной небесной». Тем не менее, после того, как звуковой поток попадает в драйвер звукового интерфейса, за дельнейшую транспортировку звукового потока отвечает именно драйвер и тут возможны любые сюрпризы. Проблемы могут быть как с WASAPI, так и ASIO независимо друг от друга и наличие двух интерфейсов повышает шансы на качественное воспроизведение звука.

Что может лишнего делать драйвер звукового интерфейса? Тоже самое, что и микшер Windows – ресемплинг и микширование каналов. Лучше не поленится и изучить внимательно настройки звуковой карты для оптимального вывода звука.

Плеер Foobar2000

Одним из самых популярных был и остается плеер Foobar2000. Если в старые добрые времена Foobar2000 был альтернативой Winamp, то сейчас вместо Winamp популярен AIMP.

К преимуществам Foobar2000 можно отнести максимально простой и понятный интерфейс управления. Большое количество расширений позволяет настроить функциональность индивидуально. В какой-то степени в этом и минус плеера. В противовес AIMP уже сразу готовый к работе со всеми плагинами, но требует проверки всех настроек с отключением лишней обработки звука.

К сожалению, Foobar2000 скачивается в базовой комплектации, в которую поддержка WASAPI и ASIO не входят. Их надо скачать отдельно со страницы компонентов.

Установка и настройка foobar2000

  • Устанавливаем foobar2000
  • Запускаем скачанные компоненты. В последних версиях необходимо просто запустить скачанные файлы и их foobar2000 автоматически в себя добавит. В старых версиях их надо было вручную добавлять в папку программы

Плеер можно скачать с официального сайта http://www.foobar2000.org/

Теперь настраиваем foobar2000

Проверяем, что во вкладке эффектов (Active DSPs) пусто.

Теперь выбираем интерфейс (звуковую карту или ЦАП) для воспроизведения.

Без загруженных в foobar2000 плагинов WASAPI и ASIO будет доступен только DS. WASAPI делятся на event и push – принципиальной разницы между ними нет. При выборе ASIO или WASAPI используйте любой вывод, который работает более стабильно. У меня на практике WASAPI чаще работает стабильнее. Причиной является то, что ASIO хорошо работает в основном в профессиональных устройствах, а в бытовых устройствах реализация ASIO формальная.

Вывод звука через WASAPI

Если под WASAPI звуковой интерфейс не поддерживает автомата опорной частоты, то частота семплирования в Windows должна совпадать с частотой дискретизации музыкального файла, иначе будет ошибка при воспроизведении. Дополнительно надо учесть, что частота воспроизведения музыкального файла должна поддерживаться звуковым устройством. Например, если максимальная поддерживаемая частота у ЦАП равна 96 кГц, то файл с частотой дискретизации в 192 кГц напрямую воспроизводится не будет. Для таких файлов необходимо использовать принудительный ресемплинг.

Разрядность сигнала необходимо выбирать в соответствии с разрядностью драйвера, обычно это 24 бит. Некоторые устройства не будут работать, если будет выбрана неверная разрядность, например Audiolab M-DAC понимает только 24 бит. Если есть поддержка как 16, так и 24 бит – лучше выбрать 24 бит.

Для ЦАП без поддержки 24 бит, или мультибитов, где микросхема ЦАП физически поддерживает только 16 бит, на вывод надо ставить 16 бит с активированным диттером при воспрозведении звуковых файлов с разрядностью выше 16 бит.

Вывод звука через ASIO

Перед выбором ASIO возможно нужно будет сделать дополнительные действия, а именно сконфигурировать настройки. Это актуально для профессиональных устройств, где ASIO представлено большим количеством каналов.

По умолчанию foobar2000 показывает доступные драйвера ASIO. Что бы ими можно было воспользоваться, надо создать дополнительную конфигурацию через кнопку «Add New».

Здесь задается название и выбирается драйвер устройства.

Здесь назначается маршрутизация каналов, обычно по умолчанию стоят правильные настройки.

Как с максимальным качеством вывести звук из компьютера под ОС Windows

Сохранить и прочитать потом —

Ваш персональный компьютер может располагать CD-приводом или не быть им оснащенным – так или иначе он способен хранить в своей памяти библиотеку аудиофайлов или же получать их путем стриминга с каких-либо ресурсов. В любом случае музыкальный сигнал формата PCM (или реже DSD) может быть выведен для цифроаналогового преобразования сторонними средствами. Чаще всего это делается посредством USB-соединения ПК с внешней звуковой картой или аудио-ЦАП. Музыку можно слушать и с выхода на наушники самого компьютера (его динамики рассматривать не будем), но в таком случае результат будет оставлять желать лучшего. Причин тому несколько, но самая главная – встроенная звуковая карта попросту не обеспечивает качества, соответствующего статусу Hi-Fi. Поэтому самый очевидный способ – доверить эту процедуру специализированному компоненту.

Но простое подключение USB-кабелем еще не гарантирует точной побитовой передачи аудио на внешний ЦАП. Этот режим работы должен быть соответствующим образом настроен.

Установка драйвера ASIO

Для чего нужен режим ASIO? При воспроизведении музыки вы должны изолировать аудиопоток от программных микшеров Windows. В данном случае вам они совершенно не нужны, поскольку могут выполнять дополнительный пересчет данных, причем не очень качественный с точки зрения канонов Hi-Fi. Протокол ASIO призван сделать путь между программным плеером и ЦАП максимально коротким. Поэтому сегодня любой уважающий себя производитель звуковых карт или ЦАП снабжает свою продукцию соответствующими ASIO-драйверами. После их установки можно приступать к настройке своего программного плеера. Они выполняются один раз и в дальнейшей доводке не нуждаются.

Первичная настройка Foobar2000

Для примера рассмотрим один из самых популярных плееров Foobar2000. Он занимает минимум места, бесплатен и при этом достаточно продвинут для сложной DSP-обработки аудиосигнала. Но сейчас мы поговорим не обо всех возможностях Foobar2000, а о его первичной настройке для работы в ASIO-режиме с вашей звуковой картой.

В платных аудиоплеерах наподобие Audiorvana или JRiver совместимость с ASIO прошита в исходном дистрибутиве, и плеер сам подхватывает доступные ASIO-подключения. Для Foobar2000 понадобится установка модуля ASIO support, которую нужно дополнительная скачать по адресу https://www.foobar2000.org/components/view/foo_out_asio. После этого в разделе плеера Preferences выбираем самую первую строку Components. Нажимаем Install и указываем программе на сохраненный файлик foo_out_asio.fb2k-component. После чего перезагружаем плеер, чтобы изменения вступили в силу.

Программная регулировка громкости

Многие пользователи предпочитают регулировать громкость непосредственно в программном плеере. Это весьма удобно, например, в случае прослушивания с помощью настольных систем с активными мониторами.

Если ваш аудиотракт работает в режиме ASIO, уменьшить громкость с помощью ползунка в углу экрана (на панели задач Windows) уже не получится. Придется использовать собственный регулятор уровня сигнала плеера (Volume Сontrol). При этом имейте в виду, что в случае программного изменения громкости побитовая передача данных оригинала на ЦАП не сохраняется. Это возможно только при максимальном положении громкости на отметке 100%.

Финальные штрихи

В подразделе Output->ASIO можно увидеть два отмеченных галочкой режима повышения производительности. Use 64-bit ASIO drivers и Run with high process priority. Обычно они включены по умолчанию, но нелишним будет их проверить.

Также можно проверить состояние консоли ASIO. Иногда доступ к ней возможен прямо в плеере, а порой ее ярлычок находится на упомянутой панели задач вместе со значками языка раскладки и др. Разрядность должна быть установлена на значениях 24 или 32 бит. Не стоит включать так называемый dither – эта опция нужна лишь для очень старых приемников аудиосигнала, чья разрядность ограничена 16 бит.

Что касается размера буфера ASIO, то если ваша система не испытывает выпадения сигнала или иных сбоев звука, лучше оставить значение по умолчанию. Его уменьшение повысит вероятность появления артефактов, а увеличение, соответственно, понизит. Ряд аудиофилов утверждает, что наилучшего звука можно добиться с минимальным значением размера буфера ASIO. Измерения характеристик аудиопотока этого предположения не подтверждают, но лучший прибор – наш слух, так что вы сможете определиться с оптимальным размером буфера ASIO самостоятельно.

Как вернуть качественный звук в Windows 7 — побитовый вывод, аппаратные эффекты (EAX и пр.)

Хочу поделиться опытом по теме звука в Windows 7.
На самом деле, всё не так плохо, как сначала кажется, и я вам сейчас это продемонстрирую.
Начну сначала.

О звуковых подсистемах

Windows XP

Тут схема звуковой подсистемы примерно следующая:

В данном случае через интерфейс DirectSound ПО имело прямой доступ к аппаратным ресурсам звуковой карты — микширование, преобразование частоты дискретизации, различные эффекты (включая 3D позиционирование) — в общем, всё, что было необходимо, как для музыки/фильмов, так и для игр.
Конечно, были свои проблемы, в частности с микшером Windows (неточная регулировка громкости, принудительная некачественная передискретизация всего и вся до 48 кГц), но они вполне легко обходились с помощью Kernel Streaming (тот самый поток, идущий мимо kmixer), а иногда даже с помощью хороших драйверов (у Creative например таковые появись только в линейке X-Fi. На аудиокартах Audigy микшер ведет себя не вполне адекватно, но, при желании, справиться с этим не сложно).

Vista, Seven

И вот, жили наши энтузиасты-звукари, горя не знали, но тут подоспела новая ОС от Microsoft, которая конечно же обязана была содержать кардинальные изменения (и не так уж важно, в какую сторону).
Таким образом, в рамках новой концепции абстракции от оборудования, Windows Vista, кроме всего прочего, получила полностью переработанную подсистему ввода/вывода звука. И конечно же, переработали её не самым лучшим образом.
Вот, какой вид она приняла в этот раз:


API — Application Programming Interface
APO — Audio Processing Object
CPT — Cross Process Transport
KST — Kernel Streaming Transport

Теперь поясню. Суть такова: все программы, заточенные под вывод на DirectSound и ничего не знающие о новом интерфейсе, подключаются к WASAPI в общем режиме (WASAPI Shared), далее происходит следующее:
Составляющие WASAPI (используя только ресурсы центрального процессора), выполняют все нужные (и не очень) преобразования:

  1. Приведение звуковых потоков от разных приложений к одному виду (указанному в настройках Windows) — т.е. к одному количеству каналов, частоте дискретизации, глубине квантования.
  2. Микширование потоков.

Плюс к этому надо добавить возможность наложения в процессе обработки программных эффектов (алгоритмы которых заложены в драйверах звуковой карты). Например, для звуковых карт Creative X-Fi есть убогая эмуляция эффекта CMSS-3D.
Качество всех этих обработчиков, само собой, не самое высокое.
Далее всё это отправляется через Kernel Transport на звуковую карту.
Теперь давайте попытаемся объективно оценить преимущества и недостатки новой системы:

+ базовые возможности обработки для звуковых карт не умеющих обрабатывать звук «своими силами»
+ поддержка на входе практически любого формата аудио — многоканальное аудио с частотой дискретизации до 192 кГц и глубиной квантования до 32-bit float
+ повышенная стабильность (спорное утверждение, в принципе)

— принудительный ресемплинг сомнительного качества
— микширование каналов без эффектов окружения (или же они очень примитивны)
— сужение динамического диапазона (особенно в режиме 16 бит)
— отсутствие доступа к аппаратному DSP, т.е. потеря всего его функционала, включая эффекты EAX в играх (в т.ч. и на картах, где EAX эмулировался программно — так как в WASAPI такого понятия даже нет нет)
— щелчки, хрипы и прочие последствия связанные с использованием ресурсов ЦП.

Как видно, больше всего не повезло компьютерным меломанам-аудиофилам (надеюсь, никто не обидится) и геймерам.
Люди же, не особо интересующиеся тем, что происходит со звуком на пути к звуковой карте — возможно даже получат определенное улучшение (хотя, опять же, им скорее всего всё равно — лишь бы работало)
А теперь, о том как преодолеть большинство из вышеперечисленных проблем, ибо, к великому несчастью, с выходом так любимой многими Windows 7, Microsoft никакой революции в плане звука нам не устроила.

Меломанам: точный вывод звука

1. Как я писал выше, большинство приложений для вывода звука в Windows 7 (хотят они того, или нет) используют режим WASAPI Shared. Но есть и другой режим — WASAPI Exclusive. Если руководствоваться блок-схемой, то в этом режиме отбрасывается всё, что лежит между Application Programming Interface и Kernel Streaming Transport — грубо говоря, звук идет непосредственно от приложения через интерфейс WASAPI на звуковую карту.
Но надо сделать замечание: так как в этом режиме отключен микшер WASAPI, а к микшеру звуковой карты доступа всё равно нет (ибо нет DirectSound), при использовании приложением эксклюзивного режима, воспроизведение любого другого источника через WASAPI становится невозможным.
Но, так или иначе, мы получаем по-битовый вывод аудио на звуковую карту.

2. Есть и другой способ. Если ваша звуковая карта имеет родной драйвер ASIO — вам крупно повезло. ASIO функционирует совершенно отдельно от WASAPI, так что, при прослушивании музыки системные звуки не будут отключаться — потоки ASIO и WASAPI будут микшироваться самой звуковой картой.
Вывод: если ваш драйвер ASIO не вызывает сомнений, используйте его.
Да, чуть не забыл — ASIO4ALL использовать нежелательно — как и Kernel Streaming, в этой ОС он работает очень нестабильно (судя по всему, из-за того, что другие звуки, идущие через WASAPI, периодически блокируют Kernel Transport).

Теперь непосредственно к делу.

Конечно же, для прослушивания музыки я рекомендую foobar2000 с плагином ASIO Output или WASAPI output support — ни за что другое ручаться я не могу. Подробная настройка вывода звука через foobar2000 описана здесь.

Любителей AIMP я разочарую — WASAPI Exclusive не предполагается даже в AIMP3 beta (только Shared), а ASIO в нем пока что сильно хромает (не умеет выставлять правильное количество каналов вывода, что приводит к нехорошим результатам).

Пользователям Winamp могу предложить плагины ASIO output Plugin или даже такое: OpenAL Output — кстати, еще один способ обхода WASAPI (видно из блоксхемы).

Для кинолюбителей: о видеоплеерах

C видеоплеерами ситуация практически аналогичная. Нам необходимо вывести звук на карту в первозданном виде. Особенно это важно, если вы хотите выполнить преобразование многоканального звука в стерео с использованием аппаратных эффектов вроде CMSS-3D в Creative X-Fi (объемное звучание в наушниках или стерео колонках). Для этого звук должен поступить на звуковую карту в многоканальном виде. Но вот беда: WASAPI в общем режиме преобразовывает каналы до кол-ва указанного в настройках Windows. Но даже если вы укажите там, скажем, 5.1, — этот параметр синхронизируется с настройками драйвера звуковой карты, и DSP не будет преобразовывать звук — так как сигнал на входе соответствует по кол-ву каналов настройкам. Т.е. тут принцип таков: в настройках драйвера звуковой карты должна стоять реальная конфигурация подключенного устройства воспроизведения (наушники, АС), а звук на карту должен поступать не измененным.
И так, тут нам опять понадобится WASAPI Exclusive. Я бы посоветовал использовать Media Player Classic HomeCinema в связке с DirectShow фильтром ReClock (только для 32-битного MPC), который, кроме всего прочего, умеет выводить звук на WASAPI Exclusive.

Геймерам: трехмерное позиционирование, EAX

Да, введение новой звуковой подсистемы, несомненно, вызвало негодование у многих геймеров, в т.ч. у счастливых обладателей высокотехнологичных звуковых карт от Creative.
И так, для тех, кто, может быть, еще не в курсе: выход найден — OpenAL. Эта библиотека имеет доступ ко всему, что касается аппаратных эффектов трехмерного позиционирования источников звука и т.н. Environmental Audio Extension — вплоть до версии 5.0.
Кроме того, что продвинутые разработчики таких игр, как например S.T.A.L.K.E.R: Call of Pripyat построили движки своих игр на OpenAL, для остальных игр, рассчитанных на DirectSound, было разработано две программы, преобразующих вызовы DirectSound в OpenAL:

  • Creative ALchemy (последняя на момент написания статьи версия) для карт Audigy и X-Fi от Creative
  • и даже 3D SoundBack для карт Realtek HDA, которые, кстати говоря, поддерживают EAX 2.0 (хоть и программно)

Выводы

И так, вот вроде бы мы имеем всё, чего нам так не хватало сразу после перехода с Windows XP на Windows 7. Конечно, не без лишней мороки, но, что делать — такие уж задачки подкинула нам фирма Microsoft.