Что означает vvti на двигателе?

VVT-i: что это за система на Toyota

Компания Toyota известна своими высокотехнологичными решениями, которые можно приводить в качестве образца инженерного искусства. Один из таких примеров — система динамического газораспределения VVT-i или Variable Valve Timing with intelligence. Благодаря её работе автомобили Toyota могут похвастать выдающимися показателями мощности, экономичности, бережного отношения к окружающей среде. Давайте посмотрим, как работает VVT-i, и почему она так эффективна.

Что такое VVT-i на Toyota

Для начала вспомним, как работает газораспределение на обычных двигателях. На фазе впуска цилиндр через открывшийся впускной клапан наполняется воздушно-топливной смесью, после чего наступает фаза её сжатия поршнем. В фазе рабочего хода смесь воспламеняется, в фазе выпуска — удаляется из цилиндра через открывшийся выпускной клапан. В теории — довольно просто, но на практике возникает ряд проблем.

Так, автомобилисты хотят больше мощности, экономичности и экологичности одновременно, но эти желания противоречат друг другу. Ведь для наращивания мощности нужно дольше держать открытым впускной клапан, чтобы цилиндр получил больше топливной смеси. При этом закономерно падает экономичность и чистота выхлопа. Найти золотую середину очень трудно из-за того, что условия работы двигателя постоянно меняются.

Есть и более прозаическая проблема — фазы газораспределения отрабатывают не мгновенно, а с некоторой задержкой. Например, между открытием впускного клапана и впуском топливной смеси проходит некоторое, хоть и довольно малое, время. И задержки эти меняются в зависимости от оборотов и прочих факторов. Сделать в таких условиях фиксированную высокоэффективную настройку газораспределения практически невозможно.

Поэтому Toyota в 1996 году внедрила в свои двигатели VVT-i — интеллектуальную систему газораспределения, которая регулирует настройки фаз на ходу, в зависимости от текущих условий работы двигателя. VVT-i первого поколения позволил добиться ощутимых улучшений:

  • мощность и крутящий момент выросли на 10% в среднем;
  • расход топлива в городском цикле снизился на 6-8 процентов;
  • концентрация оксида азота в выхлопе упала на 40%;
  • улучшилось поведение автомобиля на низких оборотах;
  • более эффективное использование турбонаддува.

Как работает VVT-i

Есть несколько условных поколений системы, их устройство несколько различается в деталях. Но в целом, принцип работы системы VVT-i один и тот же. Привод VVT-i размещается в шкиве распредвала. При этом корпус привода соединяется со звездочкой или зубчатым шкивом, а ротор привода соединяется с распредвалом. Масло подается в привод с одной или другой стороны каждого из лепестков ротора. В результате ротор и распредвал поворачиваются на нужный угол.

Когда двигатель работает на холостых оборотах, VVT-i удерживает распределительный вал на минимальном углу наклона. Благодаря этому впускные клапаны открываются точно в момент начала фазы впуска, при этом длина их выбега относительно мала. Так достигается стабильная работа двигателя без необходимости повышать обороты, и сводится до нуля вероятность перекрытия клапанов впуска и выпуска. Расход топлива в этом случае минимален.

При движении со средней скоростью VVT-i поворачивает распределительный вал так, чтобы добиться упреждающего открытия впускных клапанов и их перекрытия с выпускными. Вследствие этого цилиндры получают полноценное насыщение топливной смесью, а поршни в фазе выпуска — минимальное сопротивление, так как впускной клапан в этот момент тоже приоткрыт. Это приводит к уменьшению расхода топлива и более чистому выхлопу.

Наконец, в максимальном режиме, когда педаль газа нажата «в пол», вал ГРМ поворачивается на максимальный угол. При этом впускные клапаны продолжают открываться раньше начала фазы впуска, а закрываться — наоборот, с запаздыванием. Так двигатель выходит на максимальную мощность и крутящий момент, одновременно удерживая более умеренный расход топлива.

Читайте также: Что такое CRDI двигатель и как он работает.

Что такое Dual VVT-i и VVT-iE

Разумеется, Toyota не остановилась на достигнутом и совершенствовала систему динамического газораспределения. Следующим эволюционным этапом стала система Dual VVT-i, которая научилась управлять распределительным валом не только впускных, но и выпускных клапанов. Последняя же модификация — VVT-iE, её отличия куда глубже. Так, регулировка углов поворота валов ГРМ теперь производится не давлением масла, а специальным электромотором. Все эти усовершенствования дали ряд преимуществ:

  • показатели расхода топлива снизились ещё больше, до 10-12 процентов;
  • получен дополнительный прирост мощности и крутящего момента;
  • электронное управление в VVT-iE позволило избавиться от задержек;
  • по этой же причине VVT-iE научилась работать с момента запуска двигателя;
  • подстройка фаз газораспределения стала более тонкой и динамичной.

Читайте также: Что такое TFSI двигатель , его устройство и принцип работы.

Vvti Toyota — что это за зверь?

Vvti Toyota — что это за зверь

VVTi Toyota что это и как она устроена? VVT-i – так назвали конструкторы автоконцерна Toyota систему управления фазами газораспределения, которые придумали свою систему повышения эффективности работы двигателей внутреннего сгорания.

Это не говорит о том, что такие механизмы только у Тойоты, но рассмотрим этот принцип на её примере.

Управление фазами газораспределения по-японски

Начнём с расшифровки.

Аббревиатура VVT-i звучит на языке оригинала как Variable Valve Timing intelligent, что переводим как интеллектуальное изменение фаз газораспределения.

Впервые на рынке эта технология представлена компанией Toyota десять лет назад, в 1996 году. Аналогичные системы есть у всех автоконцернов и брендов, что говорит об их пользе. Называются они, правда, все по-разному, путая рядовых автолюбителей.

Что же привнесла VVT-i в моторостроение? В первую очередь – повышение мощности, равномерной во всём диапазоне оборотов. Моторы стали экономичнее, а следовательно более эффективнее.

Управление фазами газораспределения или управление моментом поднятия и опускания клапанов, происходит при помощи поворота на нужный угол распределительного вала.

Как это реализовано технически, рассмотрим далее.

Vvti toyota что это или как работает газораспределение VVT-i?

Система VVT-i Toyota что это такое и для чего, мы поняли. Время углубиться в её внутренности.

Главные элементы этого инженерного шедевра:

  • муфта VVT-i;
  • электромагнитный клапан (OCV — Oil Control Valve);
  • блок управления.

Алгоритм работы всей этой конструкции прост. Муфта, представляющая собой шкив с полостями внутри и ротором, закреплённым на распредвале, заполняется маслом под давлением.

Полостей несколько, и за это наполнение отвечает VVT-i клапан (OCV), действующий по командам блока управления.

Под напором масла ротор вместе с валом может поворачиваться на определённый угол, а вал уже, в свою очередь, определяет, когда подниматься и опускаться клапанам.

В стартовом положении позиция распредвала впускных клапанов обеспечивает максимальную тягу на низких оборотах мотора.

С повышением частоты вращения коленвала, система поворачивает распредвал таким образом, чтобы клапаны открывались раньше и закрывались позже – это помогает увеличить отдачу на высоких оборотах.

Как видим, технология VVT-i, принцип работы которой рассмотрели, довольно проста, но, тем не менее, эффективна.

Развитие технологии VVT-i: что ещё придумали японцы?

Есть и другие разновидности этой технологии. Так, к примеру, Dual VVT-i управляет работой не только распредвала впускных клапанов, но и выпускных.

Это позволило достичь ещё более высоких параметров двигателей. Дальнейшее развитие идеи получило название VVT-iE.

Здесь уже инженеры Toyota полностью отказались от гидравлического способа управления положением распредвала, который имел ряд недостатков, ведь для поворота вала необходимо было, чтобы давление масла поднялось до определённого уровня.

Устранить данный недостаток удалось благодаря электромоторам – теперь они поворачивают валы. Вот так вот.

Спасибо за внимание, теперь вы сами можете ответить кому угодно на вопрос «VVT-i Toyota что это такое и как оно работает».

Не забывайте подписываться на наш блог и до новых встреч!

Toyota bB NCP- (new children porn) › Бортжурнал › Что такое VVT-i?

VVT-i — это фирменная система газораспределительного механизма Toyota. От английского Variable Valve Timing with intelligence, что в переводе означает интеллектуальное изменение фаз газораспределения.

Это второе поколение системы изменения фаз газораспределения Toyota. Устанавливается на автомобили начиная с 1996-го года.

Принцип работы: основным управляющим устройством является муфта VVT-i. Изначально фазы открытия клапанов спроектированы для хорошей тяги на низких оборотах. После того, как обороты значительно увеличиваются, а вместе с этим увеличивается давление масла, которое открывает клапан VVT-i. После того как клапан открыт распределительный вал поворачивается на определенный угол относительно шкива. Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

Читайте также  Трещина в блоке двигателя ремонт чугун

VVTL-i — это фирменная система газораспределительного механизма TMC. От английского Variable Valve Timing and Lift with intelligence, что в переводе означает интеллектуальное изменение фаз газораспределения и подъема клапанов.

Третье поколение системы VVT. Отличительная особенность от второго поколения VVT-i кроется в английском слове Lift — подъем клапанов. Теперь распределительный вал не просто поворачивается в муфте VVT относительно шкива плавно регулируя время открытия впускных клапанов, а еще при определенных условиях двигателя опускает клапана глубже в цилиндры. Причем подъем клапанов реализован на обоих распределительных валах, т.е. для впускных и выпускных клапанов.

Если посмотреть на распределительный вал, то мы увидим, что для каждого цилиндра для каждой пары клапанов имеется одно коромысло, по которому отрабатывают сразу два кулачка — один обычный, а другой увеличенный. При нормальных условиях увеличенный кулачек отрабатывает в холостую, т.к. в коромысле под ним предусмотрен так называемый тапочек, который свободно входит внутрь коромысла, тем самым не позволяет большому кулачку передавать силу нажатия на коромысло. Под тапочком находится стопорный штифт, который приводится в действие давлением масла.

Принцип работы: при повышенной нагрузке на высоких оборотах ЭБУ подает сигнал на дополнительный клапан VVT — он практически такой же как и на самой муфте, за исключением не больших отличий по форме. Как только клапан открылся в магистрали создается давление масла, которое механически воздействует на стопорный штифт и сдвигает его в сторону основания тапочка. Все, теперь тапочек заблокирован в коромысле и не имеет свободного хода. Момент от большого кулачка начинает передаваться коромыслу, тем самым опуская клапан глубже в цилиндр.

Основные преимущества системы VVTL-i заключаются в том, что двигатель не плохо тянет на низах и выстреливает на верхах, улучшается топливная экономичность.

Недостатками является пониженная экологичность, из-за чего система в таком виде долго не просуществовала.

Система Dual VVT-i

Dual VVT-i — это фирменная система газораспределительного механизма TMC. Система имеет общий принцип работы с системой VVT-i, но распространенная на распределительный вал выпускных клапанов. В головке блока цилиндров на каждом шкиве обоих распределительных валах располагаются муфты VVT-i. Фактически это обычная двойная система VVT-i.

В итоге теперь ЭБУ двигателя управляет временем открытия впускными и выпускными клапанами, позволяя достигать большую топливную экономичность как на низких оборотах так и на высоких. Двигатели получились более эластичными — крутящий момент распределен равномерно по всему диапазону оборотов двигателя. Учитывая тот факт, что Toyota решила отказаться от регулировки высоты подъема клапанов как в система VVTL-i, поэтому Dual VVT-i лишена ее недостатка заключающегося в относительно невысокой экологичности.

Впервые система была установлена на двигатель 3S-GE автомобиля RS200 Altezza в 1998-м году. В настоящее время устанавливается практически на все современные двигатели Toyota, такие как V10 серия LR, V8 серия UR, V6 серия GR, серия AR и ZR.

VVT-iE — это фирменная система газораспределительного механизма TMC. От английского Variable Valve Timing — intelligent by Electric motor, что в переводе означает интеллектуальное изменение фаз газораспределения с помощью электромотора.

На сегодняшний день это самая технологичная система Toyota предназначенная для изменения фаз газораспределения современных моторов. Ее смысл точно такой же как у системы VVTL-i. Отличие заключается в самой реализации системы. Распределительные валы отклоняются на определенный угол для опережения или запаздывания относительно звездочек с помощью электродвигателя, а те давления масла, как на предыдущих моделях VVT. Теперь работа системы не зависит от оборотов двигателя и рабочей температуры в отличие от системы VVT-i, которая не способна работать при низких оборотах двигателя и не достигнув рабочей температуры двигателя. На низких оборотах давления масла мало и не способно сдвинуть лопасть муфты VVT.

VVT-iE не имеет вышеперечисленных недостатков, т.к. не зависит от масла двигателя. А так же обладает дополнительным преимуществом — способностью точно позиционировать смещение распределительных валов в зависимости от условий работы двигателя. Система начинает свою работу начиная с начала запуска двигателя до его полной остановки. Ее работа способствует высокой экологичности современных двигателей Toyota, максимальной топливной эффективности и мощности.

Принцип работы: электромотор вращается вместе с распределительным валом на скорости равной скорости распределительного вала. При необходимости электромотор либо притормаживается либо ускоряется относительно звездочки распределительного вала смещая распределительный вал на необходимый угол опережая или запаздывая фазы газораспределения.

Система VVT-iE впервые дебютировала в 2007-м году на Lexus LS 460 установленная в двигатель 1UR-FSE.

AutoSoftos.com

  • Главная
  • Руководство по ремонту
  • Софт и ПО | + лекарство
  • Статьи
  • Прошивки ЭБУ
  • Подключения Сигнализации
  • Навигация GPS Карты
  • Снятие бамперов

AutoSoftos.com
Литература по ремонту автомобилей, Програмы для диагностики авто

Всегда свежий софт и автомобильная литература

  • Доллар — 76.50
  • Евро — 91.70

Фазовращатель в ДВС. Что это такое и основной принцип работы. Разберем VVT, VVT-i, CVVT, VTC, VANOS, VTEC и прочие

  • Разместил: klays067;
  • Прочитано: 3 968;
  • Дата: 18-09-2018, 21:28;

Эффективность двигателя внутреннего сгорания зачастую зависит от процесса газообмена, то есть наполнения воздушно-топливной смеси и отвода уже отработанных газов. Как мы уже с вами знаем, этим занимается ГРМ (газораспределительный механизм), если правильно и «тонко» настроить его под определенные обороты, можно добиться очень не плохих результатов в КПД. Инженеры давно бьются над этой проблемой, решать ее можно различными способами, например воздействием на сами клапана или же поворотом распределительных валов.

Чтобы клапана ДВС работали всегда правильно и не были подвержены износу, вначале появились просто «толкатели», затем гидрокомпенсаторы, но этого оказалось мало, поэтому производители начали внедрение так называемых «фазовращателей» на распределительные валы.

Чтобы это понять что такое фазовращатели и зачем они нужны, прочтите для начала полезную информацию. Все дело в том, что двигатель работает не одинаково на различных оборотах. Для холостых и не высоких оборотов идеальными будут «узкие фазы», а для высоких – «широкие».

Узкие фазы – если коленчатый вал вращается «медленно» (холостой ход), то объем и скорость отвода отработанных газов также невелики. Именно здесь идеально применять «узкие» фазы, а также минимальное «перекрытие» (время одновременного открытия впускных и выпускных клапанов) – новая смесь не проталкивается в выпускной коллектор, через открытый выпускной клапан, но и соответственно отработанные газы (почти) не проходят во впускной. Это идеальное сочетание. Если же сделать «фазирование» — шире, именно при невысоких вращениях коленчатого вала, то «отработка» может смешаться с поступающими новыми газами, снизив тем самым ее качественные показатели, что однозначно снизит мощность (мотор станет неустойчиво работать или даже заглохнет).

Широкие фазы – когда обороты растут, соответственно растет и объем и скорость перекачиваемых газов. Здесь уже важно быстрее продувать цилиндры (от отработки) и быстрее загонять в них поступающую смесь, фазы должны быть «широкими».

Конечно же руководит открытиями обычный распределительный вал, а именно его «кулачки» (своеобразные эксцентрики), у него есть два конца – один как бы острый, он выделяется, другой просто сделан полукругом. Если конец острый — то происходит максимальное открытие, если округлый (с другой стороны) – максимальное закрытие.

НО у штатных распределительных валов – НЕТ регулировки фаз, то есть они их не могут расширить или сделать уже, все же инженеры задают усредненные показатели – что-то среднее между мощностью и экономичностью. Если завалить валы в одну из сторон, то эффективность, либо экономичность двигателя упадет. «Узкие» фазы, не дадут ДВС развивать максимальную мощность, а вот «широкие» — не буде нормально работать на малых оборотах.

Вот бы регулировать в зависимости от оборотов! Это и было изобретено – по сути это и есть система регулирования фаз, ПОПРОСТОМУ — ФАЗОВРАЩАТЕЛИ.

Сейчас не будем лезть вглубь, наша задача понять, как они работают. Собственно обычный распредвал на конце имеет распределительную шестерню, которая в свою очередь соединяется с ремнем или цепью ГРМ.

Распредвал с фазовращателем на конце имеет немного другую, измененную конструкцию. Здесь располагаются две «гидро» или электроуправляемые муфты, которые с одной стороны также зацепляются за привод ГРМ, а с другой стороны с валами. Под воздействием гидравлики или электроники (есть специальные механизмы) внутри этой муфты могут происходить сдвиги, таким образом, она может немного поворачиваться, тем самым меняя открытие или закрытие клапанов.

Читайте также  Что такое ГБЦ в двигателе?

Нужно отметить, что не всегда фазовращатель устанавливается на два распредвала сразу, бывает что один находится на впускном или на выпускном, а на втором просто обычная шестерня.

Как обычно процессом руководит ЭБУ, которая собирает данные с различных датчиков двигателя, таких как положения коленчатого вала, холла, частота вращения двигателя, скорости и т.д.

Сейчас я вам предлагаю рассмотреть основные конструкции, таких механизмов (думаю так у вас больше проясниться в голове).

Одними из первых предложили поворачивать коленвал (относительно начального положения), компания Volkswagen, со своей системой VVT (на ее основе построили свои системы много других производителей)

Что в нее входит:

Фазовращатели (гидравлические), установлены на впускном и выпускном валу. Они подключены к системе смазки мотора (собственно это масло и закачивается в них).

Если разобрать муфту то внутри есть специальная звездочка наружного корпуса, которая неподвижно соединена с валом ротора. Корпус и ротор при накачивании масла могут смещаться относительно друг друга.

Механизм закрепляется в головке блока, в ней есть каналы для подводки масла к обеим муфтам, контролируются потоки двумя электрогидравлическими распределителями. Они кстати также закрепляются на корпусе головки блока.

Холостой ход – поворачивание происходит таким образом, чтобы «впускной» распредвал обеспечил более позднее открытие и позднее закрытие клапанов, а «выпускной» разворачивается так — чтобы клапан закрывался намного раньше до подхода поршня в верхнюю мертвую точку.

Получается, что количество отработанной смеси снижается почти до минимума, причем она практически не мешает на такте впуска, это благоприятно сказывается на работе мотора на холостых оборотах, его стабильности и равномерности.

Средние и высокие обороты – здесь задача выдать максимальную мощность, поэтому «поворачивание» происходит таким образом, чтобы задержать открытие выпускных клапанов. Таким образом, остается давление газов на такте рабочего хода. Впускные в свою очередь открываются после достижение поршня верхней мертвой точки (ВМТ), и закрываются после НМТ. Таким образом, мы как бы получаем динамический эффект «дозарядки» цилиндров двигателя, что несет за собой увеличение мощности.

Максимальный крутящий момент – как становится понятно, нам нужно как можно больше наполнять цилиндры. Для этого нужно намного раньше открывать и соответственно намного позже закрывать впускные клапана, сберечь смесь внутри и не допустить ее выхода обратно в впускной коллектор. «Выпускные» же в свою очередь, закрываются с некоторым опережением до ВМТ, чтобы оставить небольшое давление в цилиндре. Думаю это понятно.

Таким образом, сейчас работает много похожих систем, из них самые распространенные Renault (VCP), BMW (VANOS/Double VANOS), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC).

НО и эти не идеальные, они могут только смещать фазы в одну или другую сторону, но не могут реально «сузить» или «расширить» их. Поэтому сейчас начинают появляться более совершенные системы.

Чтобы дополнительно регулировать поднятие клапана, были созданы еще более продвинутые системы, но родоначальницей была компания HONDA, со своим мотором VTEC (Variable Valve Timing and Lift Electronic Control). Суть в том, что кроме изменения фаз, эта система может больше поднимать клапана, тем самым улучшая наполнение цилиндров или отвод отработанных газов. У HONDA сейчас используется уже третье поколение таких моторов, которые впитали в себя сразу обе системы VTC (фазовращатели) и VTEC (поднятие клапана), и сейчас она называется – DOHC i-VTEC.

Система еще более сложная, она имеет продвинутые распредвалы в которых есть совмещенные кулачки. Два обычных по краям, которые нажимают на коромысла в обычном режиме и средний более выдвинутый кулачок (высокопрофильный), который включается и нажимает клапана скажем после 5500 оборотов. Эта конструкция имеется на каждую пару клапанов и коромысел.

Стоит отметить, что VTEC стоит и на впускном и выпускном валах, это дает реальное преимущество и прирост мощности на высоких оборотах. Прирост примерно в 5 – 7%, это очень хороший показатель.

Стоит отметить, хотя ХОНДА была первой, сейчас похожие системы используются на многих автомобилях, например Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL). Иногда как например в моторах Kia G4NA, используется лифт клапанов только на одном распредвалу (здесь только на впускном).

НО и у этой конструкции есть свои недостатки, и самый главный это ступенчатое включение в работу, то есть едите до 5000 – 5500 и дальше чувствуете (пятой точкой) включение, иногда как толчок, то есть нет плавности, а хотелось бы!

Хотите плавности пожалуйста, и тут первой в разработках была компания (барабанная дробь) – FIAT. Кто бы мог подумать, они первые создали систему MultiAir, она еще более сложная, но более точная.

«Плавная работа» здесь применена на впускных клапанах, причем распредвала здесь вообще нет. Он сохранился только на выпускной части, но он имеет воздействие и на впуск (наверное запутал, но постараюсь объяснить).

Принцип работы. Как я сказал, здесь есть один вал, и он руководит и впускными и выпускными клапанами. ОДНАКО если на «выпускные» он воздействует механически (то есть банально через кулачки), то вот на впускные воздействие передается через специальную электро-гидравлическую систему. На валу (для впуска) есть что-то типа «кулачков», которые нажимают не на сами клапана, а на поршни, а те передают приказания через электромагнитный клапан на рабочие гидроцилиндры открывать или закрывать. Таким образом, можно добиться нужного открытия в определенный период времени и оборотов. При малых оборотах, узкие фазы, при высоких – широкие, и клапан выдвигается на нужную высоту ведь здесь все управляется гидравликой или электрическими сигналами.

Это позволяет сделать плавное включение в зависимости от оборотов двигателя. Сейчас такие разработки есть также у многих производителей, таких как — BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic). Но и эти системы не идеальны до конца, что опять не так? Собственно здесь опять же есть привод ГРМ (который забирает на себя около 5% мощности), есть распредвал и дроссельная заслонка, это опять забирает много энергии, соответственно крадет КПД, вот бы от них отказаться.

Отказ полностью от валов, дросселя и привода ГРМ (цепь или ремень) выносят многие производители, но первыми сделали это Шведы в своем суперкаре Koenigsegg, который кстати развивает аж 1500 л.с.

Как это устроено? Вместо валов здесь находятся специальные электромагнитные актуаторы, в которых встроены пневматические пружины. ЭБУ контролирует каждый такой клапан и способна открывать и закрывать его очень быстро (до 100 раз в секунду) и на любое расстояние которое нужно. Это позволяет регулировать фазы на любое заданное значение! И ЭТО РЕАЛЬНО ОЧЕНЬ КРУТО.

Испытания показали, что такой мотор до 30% мощнее и эффективнее чем аналоги с распределительной системой, а также он экономичен на эти же 30%. Плавность хода здесь на высоте.

Минусом пока является что такой мотор, шумный, такое количество электромагнитных клапанов создает щелканье при открытие, причем оно нарастает при повышении оборотов. Также стоимость агрегата пока очень высока, но если его запустить в серию цена может значительно упасть.

Martovskij-kot › Blog › Система VVT-i и немного о моторах Toyota

VVT-i — это фирменная система газораспределительного механизма Тойота. От английского Variable Valve Timing with intelligence, что в переводе означает интеллектуальное изменение фаз газораспределения.

Это второе поколение системы изменения фаз газораспределения Тойота. Устанавливается на автомобили начиная с 1996-го года.

Принцип работы: основным управляющим устройством является муфта VVT-i. Изначально фазы открытия клапанов спроектированы для хорошей тяги на низких оборотах. После того, как обороты значительно увеличиваются, а вместе с этим увеличивается давление масла, которое открывает клапан VVT-i. После того как клапан открыт распределительный вал* поворачивается на определенный угол относительно шкива. Кулачки имеют определенную форму и при повороте коленчатого вала* открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

*Распределительный вал двигателя внутреннего сгорания предназначен для управления процессом впрыска в рабочую камеру топливной смеси и своевременного отвода из нее продуктов сгорания. Рабочие кулачки, расположенные по всей длине распредвала, совершают толкательные движения, и тем самым участвуют в процессе открытия и закрытия подпружиненных клапанов. Те в свою очередь в определенные рабочие фазы открывают и перекрывают впускные отверстия для подачи обогащенного кислородом топлива и выпуска выхлопных газов.

Читайте также  Нужно ли менять масло после раскоксовки двигателя?

Распределительный вал при проектировании двигателей, как правило, всегда располагается в непосредственной близости от клапанных групп, то есть в блоке, объединяющем головки цилиндров. Такая компоновка обусловлена необходимостью снижения нагрузок связанных с инерционностью тел вращения, и повышения жесткости конструктивных элементов газораспределительного механизма.

В V-образных двигателях внутреннего сгорания каждый ряд цилиндров может обслуживаться одним или двумя распредвалами. Если в конструкцию двигателя заложена одновальная схема, то распределительный вал осуществляет управление впрыском топлива и выпуском продуктов сгорания. При такой схеме распределения на каждом цилиндре стоят два клапана. При использовании двухвального механизма распределения, один вал управляет клапанами впуска, а другой клапанами выпуска. При такой схеме распределения на каждом цилиндре стоит четыре клапана (два впускных и два выпускных).

Каждый распределительный вал конструктивно состоит из рабочих кулачков, имеющих сложную криволинейную форму, и опорных шеек. Шеек, как правило, на одну больше. Каждый клапан управляет одним кулачком. Кулачки, обладая сложной формой поверхности, при вращении вала обеспечивают в определенные фазы работы двигателя, закрытие клапанов и их открытие. Кулачки распределительного вала могут непосредственно взаимодействовать с толкателями клапанов, или воздействовать на них через коромысло.

Для изготовления распределительных валов применяют чугунные отливки, или поковки из высокопрочных и износостойких марок стали. Во время работы, распределительный вал совершает вращательное движение, базируясь в разъемных опорах выполняющих функции подшипников скольжения. Число опор всегда равно количеству опорных шеек распредвала, и всегда на одну превышает количество рабочих камер. В качестве разъемных опор применяются специальные тонкостенные стальные вкладыши, имеющие антифрикционное покрытие. Все вкладыши по мере износа подлежат периодической замене.

В конструкции опор распределительного вала кроме радиальных подшипников скольжения имеется один упорный подшипник. Его функция заключается в предотвращении возможного осевого смещения вала. Конструктивно этот подшипник располагается, как правило, в непосредственной близости от приводного механизма. Для обеспечения надежной и долговечной работы распределительного вала, рабочие кулачки и опорные шейки подвергаются принудительной смазке подаваемой под давлением от маслонасоса по специальным каналам. В современных конструкциях двигателей внутреннего сгорания, для повышения эффективности работы газораспределительного механизма очень часто применяют специальные системы, изменяющие во времени фазы впрыска топливной смеси и отвода отработанных газов, такие как VVT-i, VVT-iE, Valvematic и аналогичные. Внедрение подобных мер позволяет снизить объемы потребляемого топлива и уровень токсичности выхлопных газов. На практике используется несколько методов изменения фаз впрыска топливной смеси и выпуска продуктов сгорания:

Изменение угловой ориентации распредвала при разных режимах эксплуатации механизма
Использование для управления клапаном нескольких кулачков с различными криволинейными контурами
Смещение оси вращения коромысла.
Вращательное движение на распределительный вал подается от коленчатого вала. В двигателях внутреннего сгорания, работающих по четырехтактной схеме, скорость вращения распредвала в два раза ниже скорости коленчатого вала.
На подавляющем большинстве двигателей приводящих в движение легковые автомобили, крутящий момент на распредвал подается посредством сегментно-ременной либо цепной передачи. Эти виды передач хорошо себя зарекомендовали как на бензиновых, так и на дизельных двигателях. На старых моделях вращение на распредвал передавалось посредством шестеренчатой передачи.

Цепная передача представляет собой шарнирно соединенные металлические звенья, обегающие ведущую и ведомые звездочки. Для стабильной и надежной работы цепной передачи в данном приводе задействованы натяжной и успокоительный ролики. Одна цепная передача может приводить в движение два распредвала.

Обладая множеством достоинств, цепной привод имеет один существенный недостаток. Он заключается в том, что со временем металлические звенья растягиваются, и тем самым увеличивают действительный шаг цепи. При этом шаг ведущей и ведомых звездочек остается неизменным. Не совпадение этих показателей ведет к повышенному износу цепной передачи и изменению кинематических характеристик цепного привода. По этой причине данный вид передачи требует регулярных профилактических осмотров и регулировок.

Альтернативой цепному приводу является ременная передача. Для поддержания постоянного передаточного соотношения, для ременного привода применяется сегментный ремень. Это изделие из резины имеет специальный армирующий слой и сегментные выступы, входящие в зацепление с аналогичными впадинами ведущего и ведомого шкивов. Данный привод тоже нуждается в дополнительном механизме регулировки натяжения. Однако он почти бесшумен, занимает небольшой объем. Современные модели сегментных ремней обладают огромным рабочим ресурсом, и пользуются заслуженной популярностью у производителей автомобильных двигателей. Приводной механизм распредвала может быть задействован также для передачи крутящего момента на такие механизмы как, масляные и топливные насосы, устройства управлением зажигания

*Во всех двигателях внутреннего сгорания наиболее нагруженной и ответственной деталью является коленчатый вал. Его основная функция – это преобразование возвратно-поступательного движения в движение вращательное. Особенностью работы этой детали является то, что на него действуют разные по характеру нагрузки (знакопеременные, передаваемые от поршневой группы, а также инерция сил возникающих при вращении самого коленчатого вала).

Заготовки для изготовления коленчатых валов могут быть получены двумя способами:

Чугунным литьем
Методом ковки из высокопрочных легированных марок стали
Для дизелей и двигателей с турбонаддувом коленчатые валы изготавливаются, как правило, из стали.

Конструкция всех коленчатых валов является типовой. Каждый вал состоит из следующих конструктивных элементов:

Коренные шейки
Шатунные шейки
Щеки
Противовесы
Название коренных шеек говорит само за себя. Они предназначены для базирования вала в корпусе двигателя. Этих конструктивных элементов, как правило, всегда больше чем шатунных шеек на одну коренную. Валы, выполненные по такой компоновке, являются полноопорными.

Шатунные шейки предназначены для установки шатунов, вторые концы которых закреплены пальцами в поршнях. Между собой шейки соединяются щеками, плавно переходящими в противовесы. Функциональное назначение последних конструктивных элементов заключается в компенсации возникающих на валу центробежных сил и обеспечение плавного вращения коленчатого вала.

Шейка шатуна, соединенная посредством щек с коренной шейкой образует так называемое колено. Число колен и их расположение зависит от количества камер сгорания, порядка воспламенения в них горючей смеси и показателя тактности мотора. Конструктивно колена располагаются так, чтобы обеспечить плавное вращение вала, своевременное воспламенение горючей смеси, минимальные изгибающие моменты.

На двигателях, выполненных по V-образной схеме, длина шейки шатуна проектируется с таким расчетом, чтобы она могла служить опорой для пары шатунов левого и правого рядов. В некоторых конструкциях двигателей, на коленчатых валах, для обеспечения более равномерного воспламенения горючей смеси в рабочих камерах, шейки спаренных шатунов сдвигают одну относительно другой на восемнадцать градусов.

Выше уже упоминалось о том, что коленчатый вал является наиболее нагруженной деталью двигателя. Наиболее уязвимыми на валу являются так называемые места концентрации напряжений, другими словами это переходы от шеек к щекам. Для плавного распределения нагрузок эти места выполняются в виде радиусных переходов (галтелей). Совокупная длинна галтелей в значительной мере увеличивает общую длину коленчатого вала, что чревато снижением общей жесткости конструкции вала. Решение возникшей проблемы удалось найти, утопив галтели в тело щеки или шейки.

Для снижения сил трения, возникающих в местах соединения шеек (опорных и шатунных) с опорными элементами корпуса и шатунами, применяются, выполненные из стальной ленты, разъемные подшипники скольжения, покрытые специальным покрытием, снижающим возникающее трение. Для предотвращения проворачивания этих конструктивных элементов, в их конструкции предусмотрен специальный выступ. Для ликвидации возможных осевых смещений на одной из коренных шеек устанавливается упорная антифрикционная опора.

Для снижения износа и увеличения ресурса работы, наиболее нагруженных участков коленчатого вала, в конструкции двигателей предусмотрена специальная система подачи смазки. По специальным каналам к каждой опоре коренной шейки и шатуна, насосом подается масло.
Передача крутящего момента с коленчатого вала в коробку передач происходит через хвостовую часть вала, на которой размещен маховик. В передней части вала расположены специальные шейки для крепления шестерни, приводящей в движение распределительный вал, шкив ременной передачи, приводящий в движение вспомогательные механизмы. В некоторых моделях в этой части коленчатого вала также устанавливается специальный механизм балансирных валов, предназначенный для гашения нежелательных вибраций возникающих при вращении вала.