Что такое фазовращатель в автомобиле?

Принцип работы фазовращателя

Для чего нужны фазовращатели

ФАЗОВРАЩАТЕЛЬ

ФАЗОВРАЩА́ТЕЛЬ — уст­рой­ст­во для из­ме­не­ния фа­зы элек­трических (элек­тро­маг­нит­ных) ко­ле­ба­ний. При­ме­ня­ет­ся в ав­то­ма­ти­ке, пре­об­ра­зо­вательной, из­ме­рительной и СВЧ-тех­ни­ке для из­ме­не­ния фор­мы вход­но­го сиг­на­ла, ком­пен­са­ций фа­зо­вых ис­ка­жений сиг­на­лов, фа­зо­вой мо­ду­ля­ции, соз­да­ния за­дан­ных фа­зо­вых сдви­гов сиг­на­лов в ко­ге­рент­ных ра­дио­сис­те­мах (напр., в фа­зи­ро­ван­ных ан­тен­ных ре­шёт­ках) и др.

Большинство современных ДВС все более активно получают систему изменения фаз газораспределения.

Фиксированные фазы газораспределения заставляют конструкторов ДВС проектировать мотор так, чтобы присутствовала уверенная тяга в диапазоне низких и средних оборотов, но при этом оставался запас мощности для поддержания набранной скорости и дальнейшего ускорения автомобиля при выходе ДВС на режимы около зоны максимальных оборотов.

Система изменения фаз газораспределения VVT (англ. Variable Valve Timing) создана для динамичной корректировки рабочих параметров механизма газораспределения.

Данное управление осуществляется с учетом различных режимов работы силового агрегата.

Эта система позволяет добиться повышения мощности мотора и моментной характеристики. Она обеспечивает экономию горючего, а также снижает токсичность выхлопных газов в процессе работы двигателя.

Кроме этого, она влияет на основные параметры работы газораспределительного механизма. К таким параметрам относят моменты открытия и закрытия впускных и выпускных клапанов, длительность времени открытия клапана и высоту его подъема. От этого зависит продолжительность такта впуска и выпуска, что выражается тем углом, на который повернут коленчатый вал двигателя по отношению к мертвым точкам (ВМТ и НМТ) во время движения поршня в цилиндре. Форма кулачка распределительного вала определяет фазу газораспределения, так как указанный кулачок оказывает прямое воздействие на впускной или выпускной клапан ГРМ.

Для чего необходима система изменения фаз газораспределения

В режиме холостого хода наиболее рациональными становятся «узкие» фазы газораспределения, под которыми понимается позднее открытие и ранее закрытие клапанов. При этом исключается перекрытие фаз, под которым понимается время одновременного открытия впускного и выпускного клапана. Это необходимо для того, чтобы исключить попадание выхлопных газов во впуск и выброс топливно-воздушной смеси в выпускной коллектор.

Выход мотора на режим максимальной мощности означает повышение оборотов, так как распредвал крутится быстрее и время открытия клапанов сокращается. Для того чтобы не терялась мощность и крутящий момент на высоких оборотах сохранялся, в двигатель должно поступать намного больше топливно-воздушной смеси, а выпуск отработавших газов должен быть реализован максимально эффективно. Задача решается путем раннего открытия клапанов и увеличения времени их открытия, делая фазу «широкой». Фаза перекрытия также расширяется до максимума с ростом оборотов, что необходимо для качественной продувки цилиндров.

Если мотор работает на низких оборотах, нужны максимально короткие фазы газораспределения.

Время открытия клапана должно быть увеличено до максимума, параллельно обеспечивая такты впуска и выпуска, а также эффективное перекрытие.

Сам кулачок распредвала имеет форму, которая способна обеспечить как реализацию узкой, так и широкой фазы.

Проблема заключается в том, что фиксированная форма кулачка не позволяет одновременно добиться узких и широких фаз газораспределения.

Системы изменения фаз газораспределения

система поворота распредвала;

кулачки распредвала с различным профилем;

система изменения высоты подъема клапанов;

система на основе гидроуправляемой муфты;

Работа указанных выше систем основывается на небольшом повороте распредвала по ходу его вращения. Такой способ позволяет добиться раннего открытия клапанов сравнительно с их базовым начальным положением.

Поворот распредвала осуществляется при помощи электроники управления и гидравлики, а сама система чаще всего затрагивает только впускные клапаны. Рост оборотов ДВС приводит к тому, что фазовращатель осуществляет проворот распредвала по ходу его вращения, впускные клапана открываются раньше и цилиндры намного более эффективно наполняются рабочей смесью в режиме высоких оборотов.

Данная муфта конструктивно включает в себя:

ротор, который соединен с распредвалом;

корпус, которым выступает шкив привода распредвал.

В определенные полости, которые расположены между ротором и корпусом-шкивом, попадает моторное масло из системы смазки ДВС. Масло в муфту подается по особым каналам. Когда моторное масло заполняет одну или другую полость муфты, осуществляется поворот ротора по отношению к корпусу. Этот поворот ротора означает, что и распределительный вал будет повернут на необходимый угол.

Чаще всего местом установки гидроуправляемой муфты становится привод того распределительного вала, который отвечает за работу впускных клапанов. Встречаются также конструкции ДВС, когда подобные муфты-фазовращатели стоят как на впускном распредвале, так и на выпускном. Данное решение позволяет шире и эффективнее регулировать параметры работы ГРМ на впуске и выпуске, но усложняет механизм.

Фазовращатели ГРМ

Электронное управление автоматически регулирует работу гидроуправляемой муфты.

Система такого управления включает в себя:

группу входных датчиков;

электронный блок управления;

список исполнительных устройств.

Система управления получает показания от датчика Холла, который производит оценку положения распредвалов. Дополнительно задействованы и другие датчики, которые используются ЭБУ для управления работой всего двигателя.

К таковым относят датчик, измеряющий частоту вращения коленвала, температурный датчик охлаждающей жидкости (ОЖ), датчик расхода воздуха и другие. Сигналы от этих датчиков подаются в ЭБУ, который после отправляет соответствующий сигнал на специальное управляющее (исполнительное) устройство.

Таким устройством, на которое воздействует электронный блок управления двигателем, является электромагнитный клапан (электрогидравлический распределитель). Клапан представляет собой распределитель, который при необходимости открывает доступ потоку моторного масла к гидроуправляемой муфте, а также реализует отвод масла от фазовращателя. Это зависит от того, в каком режиме работает силовой агрегат.

Данная схема изменения фаз газораспределения с использованием муфты задействуется в момент работы двигателя на холостом ходу, (мотор работает на самых низких оборотах), в режиме максимальной мощности на высоких оборотах, а также в том режиме, когда осуществлен выход ДВС на максимум крутящего момента.

Система ступенчатого изменения фаз газораспределения

Здесь используются решения, основанные на использовании кулачков распредвала разной формы. Благодаря такому способу удается достичь ступенчатого изменения момента времени, на который открывается клапан, а также изменить саму высоту подъема клапанов. Распределительный вал в таких системах управления фазами газораспределения выполнен так, что имеет сразу два кулачка малого размера, а также один кулачок большего размера. Меньшие кулачки при помощи специального рокера (коромысла) соединяются с впускными клапанами. Большой кулачок отвечает за перемещение одного незадействованного коромысла.

Трехступенчатое регулирование фаз газораспределения

Такая система позволяет переключаться с малых кулачков на большой зависимо от режима работы ДВС. Переход между режимами достигается благодаря тому, что происходит срабатывание специального механизма блокировки. Указанный блокирующий механизм основан на гидравлическом приводе.

Когда мотор работает на низких оборотах и при незначительной нагрузке, впускные клапаны приводятся в действие малыми кулачками распределительного вала, фазы газораспределения в таком режиме имеют небольшую продолжительность (узкая фаза).

Если двигатель раскручивается до определенных оборотов, система управления активирует механизм блокировки. В результате происходит соединение коромысел малых и большого кулачков, что обеспечивает жесткость конструкции. Соединение происходит при помощи особого стопорного штифта, а усилие на впускные клапаны начинает поступать от единственного большого кулачка. Малые кулачки распредвала на высоких оборотах двигателя становятся неактивными.

Выход на режим максимальных оборотов заставляет впускные клапаны работать от центрального кулачка большого размера. Указанный кулачок имеет особый профиль, который специально подобран для достижения максимального подъема клапанов, что означает повышение отдачи от ДВС на мощностных режимах работы агрегата. Такой подход значительно расширил возможности управления параметрами ГРМ для эффективного регулирования работы двигателя на различных режимах.

Системы изменения фаз газораспределения

В обычном двигателе фазы газораспределения определяются формой кулачка распределительного вала и остаются неизменными во всех диапазонах работы двигателя. Однако постоянные фазы газораспределения не позволяют создавать оптимальные процессы смесеобразования.

Чтобы варьировать фазами газораспределения, необходимо изменять положение распределительного вала относительно коленчатого.

Холостой ход. На этом режиме работы следует устанавливать такой угол поворота распределительного вала, который соответствует самому позднему началу открытия впускных клапанов (максимальный угол задержки, при минимальном перекрытии клапанов). Этим обеспечивается минимальное поступление отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя и снижение расхода топлива.

Режим низких нагрузок. Перекрытие клапанов уменьшается для минимизации поступления отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя.

Режим средних нагрузок. Перекрытие клапанов увеличивается, что позволяет снизить «насосные» потери, при этом часть отработавших газов поступает во впускной трубопровод, что позволяет снизить температуру рабочего цикла и вследствие этого содержание оксидов азота в отработавших газах.

Режим высоких нагрузок при низкой частоте вращения коленчатого вала. На этом режиме обеспечивается раннее закрытие впускных клапанов, что обеспечивает увеличение крутящего момента. Небольшое или нулевое перекрытие клапанов заставляет двигатель бо­лее четко реагировать на изменение положения дроссельной заслонки, что, например, очень важно в транспортном потоке.

Режим высоких нагрузок при высокой частоте вращения коленчатого вала. Для того чтобы получить максимальную мощность при высокой частоте вращения коленчатого вала, необходимо перекры­тие клапанов около ВМТ с большим углом поворота коленчатого вала. Это связано с тем, что мощность в наиболь­шей степени зависит от максимально возможного количества топливно-воздушной смеси, попадающей в цилиндр за ко­роткое время, но, чем выше частота вращения, тем меньше время, отводимое на заполнение цилиндра.

Читайте также  Как убрать глубокие царапины на кузове автомобиля?

Главными задачами системы изменения фаз газораспределения являются:

  • улучшение качества работы двигателя на холостом ходу
  • снижение расхода топлива
  • оптимизация крутящего момента в области средних и высоких частот вращения коленчатого вала
  • увеличение внутренней рециркуляции отработавших газов с сопутствующим ей снижением температуры газов при сгорании и уменьшением выброса оксидов азота
  • увеличение мощности в области высоких частот вращения коленчатого вала

Неисправность фазорегулятора

    156 1 175k

Неисправности фазорегулятора могут заключаться в следующем: он начинает издавать неприятные трескающие звуки, замирает в одном из крайних положений, нарушается работа электромагнитного клапана фазорегулятора, формируется ошибка в памяти ЭБУ.

С неисправным фазорегулятором хотя и можно ездить, но необходимо понимать, что двигатель будет работать не в оптимальном режиме. Это повлияет на расход топлива и динамические характеристики двигателя. В зависимости от возникшей проблемы с муфтой, клапаном или системой фазорегулятора в целом, будут отличаться симптомы неисправности и возможность их устранения.

Принцип действия фазорегулятора

Чтобы разобраться почему трещит фазорегулятор или клинит его клапан, имеет смысл разобраться в принципе действия всей системы. Это даст лучшее понимание поломок и дальнейших действий по их ремонту.

На различных оборотах двигатель работает не одинаково. Для холостых и низких оборотов характерны так называемые «узкие фазы», при которых скорость отвода выхлопных газов невелики. И наоборот, для больших оборотов характерны «широкие фазы», когда объем выпускаемых газов большой. Если на низких оборотах будут использоваться «широкие фазы», то отработанные газы будут смешиваться со вновь поступающими, что приведет к снижению мощности двигателя, и даже его остановке. А когда на высоких оборотах включаться «узкие фазы», то приведет к снижению мощности мотора и его динамике работы.

Существует несколько типов систем фазорегуляторов. VVT (Variable Valve Timing), разработана Volkswagen, CVVT — используется Kia и Hyindai, VVT-i — применяется Toyota и VTC — устанавливаются на движки Honda, VCP — фазорегуляторы Renault, Vanos / Double Vanos — система, используемая в BMW. Далее рассмотрим принцип действия фазорегулятора на примере автомобиля «Рено Меган 2» с 16-ти клапанным двигателем К4М, поскольку выход его из строя является «детской болезнью» этой машины и ее владельцы чаще всего сталкиваются с неработающим фазорегулятором.

Управление происходит через электромагнитный клапан, подача масла к которому регулируется электронными сигналами с дискретной частотой 0 или 250 Гц. Весь этот процесс контролируется электронным блоком управления на основании сигналов, поступающих от датчиков двигателя. Включение фазорегулятора происходит при возрастающей нагрузке на двигатель (значение оборотов от 1500 до 4300 оборотов в минуту) когда соблюдаются следующие условия:

  • исправные датчики положения коленчатого (ДПКВ) и распределительного валов (ДПРВ);
  • отсутствуют неисправности в системе впрыска топлива;
  • наблюдается пороговое значение впрыска фаз;
  • температура охлаждающей жидкости находится в пределах +10°…+120°С;
  • повышенная температура масла двигателя.

Возвращение фазорегулятора в исходное положение происходит когда обороты снижаются при тех же условиях, но с тем отличием, что рассчитано нулевое смещение фаз. В этом случае запорный плунжер блокирует механизм. Таким образом, «виновниками» неисправности фазорегулятора могут быть не только он сам, но и электромагнитный клапан, датчики двигателя, неисправности в моторе, сбои в работе ЭБУ.

Признаки неисправности фазорегулятора

О полном или частичном выходе фазорегулятора из строя можно судить по следующим признакам:

  • Увеличение шумности работы двигателя. Из района установки распределительного вала будут исходить повторяющиеся лязгающие звуки. Некоторые автолюбители говорят, что они похожи на работу дизельного мотора.
  • Нестабильная работа двигателя в одном из режимов. Мотор может хорошо держать холостые обороты, но плохо разгоняться и терять мощность. Или наоборот, нормально ездить, но «захлебываться» на холостых. На лицо общее снижение выходной мощности.
  • Повышенный расход топлива. Опять же, в каком-то режиме работы мотора. Желательно проверять расход топлива в динамике по бортовому компьютеру либо диагностическому прибору.
  • Повышение токсичности выхлопных газов. Обычно их количество становится больше, и они приобретают более резкий, чем ранее, топливный, запах.
  • Повышается расход моторного масла. Оно может начать активно выгорать (уменьшается его уровень в картере) либо терять свои эксплуатационные свойства.
  • Нестабильные обороты после запуска двигателя. Это обычно продолжается около 2…10 секунд. В это же время треск от фазорегулятора сильнее, а потом он немного стихает.
  • Формирование ошибки рассогласования коленчатого и распределительного валов или положения распредвала. У разных машин их код может отличаться. Например, у «Рено» ошибка с кодом DF080 прямо указывает на проблемы с «фазиком». У других машин зачастую возникает ошибка p0011 или p0016, указывающих на рассинхронизацию системы.

Обратите внимание, что кроме этого, при выходе фазорегулятора из строя может проявляться только часть указанных признаков или проявляются они на разных машинах по-разному.

Причины неисправности фазорегулятора

Неисправности делят непосредственно по фазорегулятору и по его управляющему клапану. Так, причинами неисправности фазорегулятора являются:

  • Износ поворотного механизма (лопатки/лопасти). В обычных условиях это происходит по естественным причинам, и менять фазорегуляторы рекомендуется через каждые 100…200 тысяч километров пробега. Ускорить износ может загрязненное либо некачественное масло.
  • Смещение либо рассогласование установленных значений поворотных углов фазорегулятора. Обычно это происходит из-за того, что поворотный механизм фазорегулятора в его корпусе превышает допустимые углы поворота по причине износа металла.

А вот причины поломки клапана vvt другие.

  • Выход из строя сальника клапана фазорегулятора. У автомобилей Рено Меган 2 клапан фазорегулятора установлен в углублении в передней части двигателя, где много грязи. Соответственно, если сальник теряет герметичность, то пыль и грязь извне смешивается с маслом и попадает в рабочую полость механизма. Как результат — заклинивание клапана и износ поворотного механизма самого регулятора.
  • Проблемы с электрической цепью клапана. Это может быть ее обрыв, повреждение контакта, повреждение изоляции, замыкание на корпус либо на провод питания, снижение или повышение сопротивления.
  • Попадание пластиковой стружки. На фазорегуляторах часто лопатки делаются из пластмассы. По мере их износа они меняют свою геометрию и выпадают из посадочного места. Вместе с маслом они попадают в клапан, распадаются и измельчаются. Это может привести либо к неполному ходу штока клапана, либо даже к полному его заклиниванию.

Также причины отказа фазорегулятора могут крыться в сбое работы других связанных элементов:

  • Некорректные сигналы от ДПКВ и/или ДПРВ. Это может быть связано как с проблемами с указанными датчиками, так и с тем, что фазорегулятор износился, из-за чего распределительный либо коленчатый вал находятся в положении, выходящим за допустимые границы в конкретный момент времени. В данном случае вместе с фазорегулятором нужно проверить датчик положения коленвала и проверить ДПРВ.
  • Проблемы в работе ЭБУ. В редких случаях в электронном блоке управления происходит программный сбой и даже при всех корректных данных он начинает выдавать ошибки, в том числе в отношении фазорегулятора.

Демонтаж и чистка фазорегулятора

Проверку работы фазика можно выполнить и без демонтажа. Но для выполнения проверки по износу фазорегулятора его необходимо снять и разобрать. Чтобы найти где он находится нужно ориентироваться по переднему краю распредвала. В зависимости от конструкции мотора демонтаж самого фазорегулятора будет отличаться. Однако в любом случае, через его кожух перекинут ремень ГРМ. Поэтому нужно обеспечить доступ к ремню, а сам ремень нужно снять.

Отсоединив клапан всегда проверяйте состояние фильтрующей сетки. Если она грязная ее нужно почистить (промыть очистителем). Чтобы почистить сетку нужно аккуратно раздвинуть ее в месте защелкивания и демонтировать с посадочного места. Сетку можно промыть в бензине либо другой чистящей жидкости при помощи зубной щетки или другого нежесткого предмета.

Сам клапан фазорегулятора также можно очистить от масла и нагара (как снаружи, так и внутри, если это позволяет его конструкция) используя карбклинер. Если клапан чистый, то можно переходить к его проверке.

Как проверить фазорегулятор

Существует один простой метод, как можно проверить, работает фазорегулятор в двигателе или нет. Для этого необходимы лишь два тонких провода длиной около полутора метров. Суть проверки заключается в следующем:

  • Снять штекер с разъема клапана подачи масла в фазорегулятор и подключить туда подготовленные проводки.
  • Второй конец одного из проводов нужно подсоединить на одну из клемм аккумулятора (полярность в данном случае неважна).
  • Второй конец второго провода оставить пока в подвешенном состоянии.
  • Запустить двигатель на холодную и оставить работать на холостых оборотах. Важно, чтобы масло в движке было остывшим!
  • Подключить конец второго провода ко второй клемме аккумулятора.
  • Если двигатель после этого начинает «задыхаться», значит, фазорегулятор работает, в противном случае — нет!

Электромагнитный клапан фазорегулятора необходимо проверять по следующему алгоритму:

  • Выбрав на тестере режим измерение сопротивления, замерьте его между выводами клапана. Если ориентироваться на данные руководства Меган 2, то при температуре воздуха +20°С оно должно находиться в пределах 6,7…7,7 Ом.
  • Если сопротивление ниже — значит, имеет место замыкание, если больше — обрыв. В любом случае клапана не ремонтируют, а меняют на новые.
Читайте также  Почему отказывают в страховке автомобиля?

Измерение сопротивления можно выполнить и без демонтажа, однако нужно проверить и механическую составляющую клапана. Для этого понадобится:

  • От источника питания 12 Вольт (АКБ авто) подайте напряжение дополнительными проводками на электрический разъем клапана.
  • Если клапан исправен и чист, то при этом его поршень выдвинется вниз. Если напряжение убрать — шток должен вернуться в исходное положение.
  • Далее нужно проверить зазор в крайних выдвинутых положениях. Он должен быть не более 0,8 мм (можно воспользоваться металлическим щупом для проверки зазоров клапанов). Если он меньше, то клапан нужно прочистить по описанному выше алгоритму.После выполнения чистки электрическую и механическую проверки следует, а затем принимать решение о замене. повторить.

Ошибка фазорегулятора

В случае, если на Рено Меган 2 в блоке управления сформировалась ошибка DF080 (цепь изменения характеристики распределительного вала, обрыв цепи), то нужно в первую очередь проверить клапан по приведенному выше алгоритму. Если он работает нормально, то в таком случае необходимо «прозвонить» по цепи провода от фишки клапана до электронного блока управления.

Чаще всего проблемы возникают в двух местах. Первое — в жгуте проводов, которые идут с самого двигателя на блок управления двигателем. Второе — в самом разъеме. Если проводка целая, то смотрите разъем. Со временем пины на них разжимаются. Чтобы их поджать нужно выполнить следующие действия:

  • снять пластиковый держатель с разъема (сдернуть вверх);
  • после этого появится доступ к внутренним контактам;
  • аналогично нужно демонтировать заднюю часть корпуса держателя;
  • после этого поочередно достать через заднюю часть один и второй сигнальный провод (действовать лучше по очереди, чтобы не перепутать распиновку);
  • на освободившейся клемме необходимо при помощи какого-то острого предмета нужно поджать клеммы;
  • собрать все в исходное положение.

Отключение фазорегулятора

Многих автолюбителей волнует вопрос — можно ли ездить с неисправным фазорегулятором? Ответ — да, можно, но нужно понимать последствия. Если же вы по каким-то причинам все же решите отключить фазорегулятор, то сделать это можно так (рассматривается на том же Рено Меган 2):

  • отсоединить штекер от разъема клапана подачи масла на фазорегулятор;
  • в результате возникнет ошибка DF080, а возможно и дополнительные при наличии сопутствующих поломок;
  • чтобы избавиться от ошибки и «обмануть» блок управления, необходимо между двумя выводами на штекере вставить электрический резистор сопротивлением около 7 Ом (как указывалось выше — 6,7…7,7 Ом для теплого времени года);
  • сбросить возникшую в блоке управления ошибку программно либо отсоединив на несколько секунд минусовую клемму аккумулятора;
  • снятый штекер надежно закрепить в подкапотном пространстве, чтобы он не оплавился и не мешал другим деталям.

Заключение

Автопроизводители рекомендуют менять фазорегуляторы через каждые 100…200 тысяч километров пробега. Если он застучал раньше — в первую очередь нужно проверить его клапан, так как это проще. Глушить или не глушить «фазик» — решать автовладельцу, поскольку это приводит к негативным последствиям. Демонтаж и замена самого фазорегулятора — это трудоемкое занятие для всех современных машин. Поэтому выполнять такую процедуру можно только, если у вас есть опыт работ и соответствующие инструменты. Но лучше обратиться за помощью в автосервис.

Современные системы управления фазами ГРМ

Фаза газораспределения непосредственно определяет эффективность работы двигателя внутреннего сгорания. Фаза ГРМ означает своевременное открытие и закрытие клапанов, а также время клапанов в открытом состоянии.

До момента появления фазовращателей, на всех моторах кулачок распределительного вала непосредственно воздействовал на клапан, и определял время открытия клапанов, время, при котором клапан открыт, а также высоту подъема клапана. Отмечу, что движение топливовоздушной смеси и отработанных газов отличается в зависимости от типа режима работы мотора. Этот параметр определяет эффективность работы двигателя.

При наличии фиксированной фазы газораспределительного механизма, перед конструкторами силовых агрегатов стоит серьезная задача — сделать двигатель таким образом, чтобы в режиме минимальных и средних оборотов сохранялся крутящий момент ближе к пиковому значению, а при достижении максимальных оборотов, полка крутящего момента не упала резко. Ко всему прочему, нужно сохранить эластичность в переходных режимах, а также стабильный холостой ход. Фиксированная фаза не дает возможность охватить все режимы работы двигателя с одинаковой эффективностью, поэтому была придумана система изменения фаз ГРМ.

Система регулировки фаз позволяет в динамическом режиме изменять значения фаз, в зависимости от степени нагрузки двигателя и оборотов. Тем самым, распределительные валы смещаются в фазах, а полка крутящего момента выравнивается. Благодаря фазовращателям можно на ходу корректировать время открытия и закрытия клапанов, время перекрытия, высота подъема клапанов. Фазы газораспределения управляют моментом тактов двигателя, смещая момент фазы в ту, или иную сторону.

Что дает фазовращатель

Максимальная величина КПД на атмосферных моторах во многом зависит от фаз ГРМ. Например: в режиме холостого хода требуется максимально узкая фаза, которая означает более позднее открытие впускного или максимально раннее открытие выпускного клапана. В данном случае перекрытие клапанов исключено, когда оба клапана открыты, ведь малое количество оборотов коленвала позволяет выхлопным газам попасть во впускной коллектор, а топливно-воздушной смеси в выпускной коллектор.

В режиме максимальной мощности требуется большое количество топливно воздушной смеси. Так как коленвал двигается намного быстрее, то времени на открытие клапанов остается крайне мало, отчего на некоторых моторах клапана не успевают закрываться, и “зависают”, встречаясь с поршнем.

Фазовращатель, для максимального наполнения, позволяет раньше открыть клапан, а также увеличить время его открытия, что называется “расширить фазу”. Тем самым, расширяется фаза перекрытия для обеспечения качественной продувки цилиндра.

Кулачок распредвала имеет такую форму, которая обеспечивает широкую и узкую фазу. Проблема фиксированной фазы заключается в невозможности одновременного обеспечения узкой и широкой фазы. Это говорит о том, что инженеры подобрали форму кулачка таким образом, чтобы обеспечить баланс между максимальным крутящим моментом на средних оборотах, и максимальной мощности на высоких оборотах.

Фазовращатель же обеспечивает гибкость, позволяющую подстраивать фазы под конкретный режим работы мотора, а итог такого действия — достижение крутящего момента в необходимом диапазоне оборотов и топливная экономичность.

Какие бывают виды фазовращателей

В современных моторах применяются три вида регулировки фаз ГРМ:

  • система поворота распределительного вала;
  • различный профиль кулачков распредвалов;
  • механизм изменения подъема клапанов.

Гидроуправляемая муфта системы фазовращателя

Ступенчатое изменение фаз газораспределения

Посредством эволюции в моторостроении, инженерам удалось эффективно настраивает расширение и сужение фаз. Подобное решение основывается на ступенчатом исполнении кулачков. Система изменения формы кулачков применяется в моторах Honda (VTEC), Mitsubishi (MIVEC) и Toyota (VVTL-i).

Вышеуказанные системы одинаковы по принципу действия, а именно: распределительный вал здесь имеет два кулачка малой формы и один кулачок большого диаметра. Маленькие кулачки сообщаются с клапаном через рокера, а большой кулачок отвечает за движение незадействующего коромысла.

Эта система, в зависимости от режима работы мотора, позволяет переключаться между большим и малым кулачком, изменяя фазу ГРМ. Эластичность переходного режима обеспечивается гидравлическим блокирующим устройством.

При работе на малых оборотах и холостом ходу задействованы малые кулачки с узкой фазой, а при повышении нагрузки задействован широкофазный большой кулачок.

Система регулировки подъема клапана

Новатором этой технологии в 2001 году стала компания BMW с системой Valvetronic. Эта система позволила отказаться от дроссельной заслонки, а количество впускного воздуха определять высотой подъема клапана. Однако, дроссельная заслонка на двигателе присутствует но она все время открыта.

Лучшее решение от образования разряжения — это открытие клапана тогда, когда требуется максимальное наполнение цилиндра смесью. Время открытия клапана зависит от степени нажатия на педаль газа. Valvetronic позволяет экономить до 15% топлива, а также повысить мощность на 10% относительно мотора с таким же объемом.

Данная система имеет в конструкции вал-эксцентрик и промежуточный вал. Эксцентриковый вал вращается при помощи электродвигателя с червячной передачей. Вращение вала воздействует на промежуточный рычаг, который меняя свое положение, заставляет двигаться коромысло в заданном положении, согласно режиму работы ДВС.

Система работает постоянно, в зависимости от режима работы мотор, диапазон подъема клапана может варьироваться от 0,2 до 12 мм.

Современные системы фазовращателей направлены на достижение максимального КПД двигателя от своевременного смещения фазы ГРМ и нужного подъема клапана. Любая из вышеуказанных систем представляет собой сложную конструкцию, которая требует вмешательства в виде обслуживания и ремонта, как минимум раз в 150 000 км.

Что такое фазовращатель в автомобиле?

Регулирование фаз газораспределения ДВС


В теории для наполнения цилиндра горючей смесью и выпуска отработанных газов клапаны должны открываться точно в верхней или нижней мертвых точках. На практике же это приходится делать заблаговременно. Причем на разных оборотах двигателя время открытого состояния должно быть разным. Но время и высота подъема клапанов раз и навсегда заданы формой кулачков распредвала, представляя собой компромисс между высоким крутящим моментом на низких оборотах и высокой мощностью на высоких оборотах. Чтобы оптимизировать наполнение и очистку цилиндров двигателя в разных режимах работы были созданы системы изменения фаз газораспределения.

  • 1 Как двигают фазы
  • 2 Системы регулирования фаз
Читайте также  Как заделать скол на капоте автомобиля?

Как двигают фазы

У разных производителей существуют различные конструкции таких систем. Одни изменяют время подъема клапанов, другие – высоту подъема, а третьи – и то, и другое. Системы изменения фаз могут устанавливаться только для впускных клапанов или и для впускных, и для выпускных. В настоящее время используется три способа изменения фаз газораспределения.

  • Первый способ – поворот распредвала по ходу вращения с ростом оборотов двигателя. Таким образом, обеспечивается более раннее открытие клапанов. Основная деталь таких систем – фазовращатель (другое название – гидроуправляемая муфта). Он представляет собой ротор, смонтированный в шкиве распредвала, между которыми есть полости. Эти полости по сигналу контроллера двигателя через электромагнитный клапан заполняются маслом, что приводит к повороту распредвала. Угол поворота зависит от того, какая именно полость заполнена. Фазовращатель в большинстве случаев устанавливается только на впускной распредвал, на некоторых системах – и на выпускной. Описанный способ используется в системах VANOS и Double VANOS от BMW, VVT-i и Dual VVT-i(Variable Valve Timing with intelligence) от Toyota, VVT(Variable Valve Timing) от Volkswagen, VTC(Variable Timing Control) от Honda, CVVT(Continuous Variable Valve Timing) от Hyundai, Kia, Volvo, General Motors, VCP(Variable Cam Phases) от Renault.
  • Второй способ – применение кулачков разного профиля на разных режимах работы. На малых оборотах используются кулачки, обеспечивающие «узкие» фазы, то есть малые высоту подъема и время открытия клапанов. С ростом оборотов по команде блока управления происходит переключение на «широкофазные» кулачки. Таким образом, фазы меняются ступенчато, а не плавно, как в предыдущей системе. Зато, кроме фаз, регулируется и высота подъема клапана. Разнопрофильные кулачки используют в своих системах: VTEC (Variable Valve Timing and Lift Electronic Control) от Honda, VVTL-i (Variable Valve Timing and Lift with intelligence) от Toyota, MIVEC (Mitsubishi Innovative Valve timing Electronic Control) от Mitsubishi.
  • Третья, самая совершенная группа систем, плавно регулирует высоту подъема клапанов. Главное достоинство таких систем в том, что они позволяют отказаться от дроссельной заслонки на впуске. Тем самым существенно снижаются насосные потери и расход топлива. Впервые такая система под названием Valvetroniс была применена BMW. В ней между распредвалом и клапаном расположен дополнительный рычаг, один конец которого давит на коромысло клапана, а второй соединен с эксцентриковым валом. Проворачивая этот вал с помощью электромотора, система управления тем самым меняет наклон рычага и его плечо. Увеличение плеча приводит к увеличению подъема клапана и количества воздуха, попадающего в цилиндры. Высота подъема регулируется в пределах от 0,5 до 12 мм.

Вслед за BMW аналогичные системы создали Valvematic от Toyota, VEL (Variable Valve Event and Lift System) от Nissan, MultiAir от Fiat, VTI (Variable Valve and Timing Injection) от Peugeot.

В системе MultiAir используется один распредвал, который приводит и впускные, и выпускные клапана. Но если выпускные клапана механически управляются кулачками, то на впускные воздействие от кулачков передается через специальную электрогидравлическую систему. Именно в ней и состоит новизна. Впускные кулачки нажимают на поршни, а те через электромагнитный клапан передают усилие на рабочие гидроцилиндры, которые уже воздействуют на впускные клапана.

Главный узел – именно клапан, регулирующий давление в системе. Он имеет только два положения: открыт-закрыт. Если он открыт, давление в системе отсутствует, и усилие на клапан не передается. Поэтому, управляя моментом и длительностью открытия электромагнитного клапана за то время, пока кулачок воздействует на поршенек, можно добиться любого алгоритма открытия впускных клапанов. А значит, ширину фаз можно плавно регулировать от 0 до 100%.

Максимальная ширина фазы определяется профилем впускного кулачка распредвала.

А какое отношение все вышеописанное имеет к экологии? Системы изменения фаз газораспределения, оптимизируя процесс сгорания топлива, тем самым снижают его расход, а, значит и количество вредных выбросов.

Системы регулирования фаз

Система регулирования фаз VTEC от Honda.Система регулирования фаз MultiAir от FIATСистема регулирования фаз VVT от Volkswagen.

Tan4ilos › Blog › Фазовращатели (vanos, vvt-i, cvvt)

Почти на всех современных двигателях есть фазовращатели. Как оно работает написано везде, и везде написано, что это очень хорошо, но какая в них польза? Для начала надо вспомнить какие двигатели были в 80-х — 90-х годах, когда не было фазовращателей.

Если двигатель делали под джип или тяжелую машину, он выдавал много мощности на низких оборотах — 1500-3000 (дефорсированный), на высоких оборотах (по которым считают мощность двигателя) он выдавал 40-50 лс/1 л объема двигателя. Т.е. 2 литра — всего 80-100 лс. На таких двигателях ощущался провал мощности после 4500-5000 оборотах, но на оборотах, на которых люди ездят в обычной жизни в потоке машин (1500-3000) он очень хорошо тянул и мало ел бензина.

Второй тип — это двигатель для легкового автомобиля — он старался равномерно тянуть на всех оборотах и плавно поднимать мощность до самой отсечки на 6000-6500 об. На нем можно и ехать в потоке на легкой машине и погонять раскручивая двигатель до предела. Литровая мощность тут была 60-65 лс. Т.е. если двигатель объем 1,6 л — то мощность 96-104 лс.

И третий тип — двигатели для спортивных машин: спортивных версий хэтчбеков, седанов, купе и т.д. Как правило, они выдавали 70-100 лс на литр. Ужасно тянули на низких оборотах, жрали много бензина, но раскручивались выше 7000 об., дарили владельцу спортивный подхват после 3500-5000 об и спортивный рев. Гонять на таком одно удовольствие, он буд-то сам заставляет тебя надавить педаль газа и разогнать его до отсечки.

В основном этого эффекта можно добиться очень просто, можно повернуть распредвал двигателя на 1-2 зуба против часовой (прибавиться мощность на низах), или по часовой стрелке (на холостых оборотах могут появиться вибрации и повысится расход бензина, но зато появится подхват после 4000, звук станет спортивнее и мощности станет больше). Сам делал такие эксперименты на Lancer 9 (1,6 л), после того как менял самостоятельно ремень ГРМ, заметил, что раньше распредвал стоял со сдвигом на 1 зуб по часовой, в сервисе, видимо, накосячили и машина так прошла не один десяток тысяч км, кстати такое бывает часто и особо этого не заметишь. Т.к. крутить распредвал на 1 зуб не вредно, год экспериментировал, крутил туда-сюда на 1 зуб. По мощности разница была как писал выше. По расходу бензина — если двигатель был настроен на низа, то расход был на 0,5 л меньше, от нормального состояния, если распредвал повернут на высокие обороты — то расход был на 0,5 л выше.

Так вот фазовращатели делают это сами и крутят распредвал на большие углы чем 1 зуб. Они управляются инжектором и меняют угол распредвала постоянно, стараясь выдавать максимум мощности на низах и верхах. Казалось бы какая полезная штука.

А теперь самое интересное. В 90-х годах, когда фазовращатели начали устанавливать на дорогие машины — бмв и мерседес. Лишнюю мощность на высоких оборотах двигатели не получили, зато на низах 2х литровый двигатель тянул как 2,3 литра, а кушал как 1,6-1,8 л. И обычный водитель, двигаясь в стандартном потоке машин на 1500-3000 об., получил больше мощности и меньший расход бензина — идеально. Такие двигатели сравнивали с троллейбусными (электродвигателями), потому что у них была очень ровная тяга на всех оборотах.

Но в 2000-х годах продолжалась гонка вооружений, надо было повышать мощность (хотя максимальная мощность была достигнута еще в конце 80-х с появлением инжекторов с электронной системой зажигания, в 90-х воткнули 4 клапана на цилиндр и еще повысили мощность). Фазовращатели начали настраивать на высокие обороты, поэтому при обычном движении они стали полностью бесполезны, просто в технических характеристиках было больше лошадей — это полезно для маркетинга и продаж (журналисты туда смотрят и хвалят, покупатели сравнивают перед покупкой мощность разных машин, выбирают помощнее), а то что они доступны только на 5000-6000 об. и люди редко (а кто-то никогда) выкручивают двигатель до таких значений, никого до сих пор не волнует, машины надо продавать и точка. Да и найти график мощности к двигателю очень тяжело, его просто так производители не раскрывают, хвастаться то нечем.

Но есть исключения. Например мой двигатель в пежо 207 с двумя фазовращателями — ET3 объемом 1,4 литра и мощностью всего 88 лс. (у Соляриса 1,4л выдавал 107 лс). Да и любая машина с фазовращателями и низкой литровой мощностью, проблема в том, что таких мало.

Ниже куча графиков мощности, и можно увидеть, что на маленьком пежо с 1,4л мощность на 2000 примерно такая же как у 2-х литрового двигателя без фазовращателей (lancer 9 2,0, бмв 320 и 520 (520 е34 кстати весила 1,5 тонны и на них неплохо гоняли) — в районе или чуть больше 25 кВт — 34 лс.